COMP 111 - Week 12 Learning Activities
Activity 12-1

Outcome: Identify and defend good candidates for classes and methods.

With some new venture capital, we have decided to start up a class pizza business. Obviously, to stay competitive we have to be sure that our new startup is fully ready for the electronic business world. Therefore, we want to design the software ahead of time. We expect the following use cases:

Customers: Want to be able to login, place an order, and see the status of any of their orders.

Cook: Want to be able to login, see the list of orders that need to be processed, get the details on an order, and complete them.

Delivery: Want to be able to login, see the list of orders that are ready for delivery, get the delivery details for the next order, mark the order as being delivered, and complete it when the delivery has been taken care of.

A pizza: Will always have a crust of some type. It is assumed to have cheese by default. It may have 0 or more additional toppings. A pizza will also have some price.

An order: Will consists of one or more pizzas for a given customer.

Design the classes for the software with as much detail as possible. If you feel you do not have enough information about something, either ask for the information or note your assumption.

Class Customer

private String login;

private String password;

private String loginStatus;

private String address;

private String phone;

public Customer();

public Customer(String login, String password);

public Boolean login (String loginID, String password)

public boolena place Order(Order inOrder)

public void setAddress(String address);

public String getAddress();

public void setPhone(String phone);

public String getPhone();
Class Staff

private String staffPosition

private String login

private String password

private String loginStatus

pulbic Staff();

pulbic Staff(String Position, String login,

 String password);

public Boolean login (String loginID, String password)
Class Pizza

private String crustType

private ArrayList<String> toppings;

private float price;

public Pizza();

public Pizza(String crustType, ArrayList<String> toppings)

public float getPrice();

public float setPrice(float price);

public float setDiscount(float percent);

public void addTopping(String topping);

public void removeTopping(String topping);
Class Order

private ArrayList<Pizza> pizzaList;

private Customer customer;

private String stautus;

public Order();

public Order(ArrayList<Pizza> pizzaList,

 Customer customer, String status)
Class Orders

private ArrayList<Order> orderList;

public Orders();

public boolean addOrder(Order otrder);

public Order findOrders(String customerName);

public boolean deleteOrder(Order order)

Activity 12-2

Outcome: Design classes to reduce coupling, increase cohesion, and minimize side effects.

Most importantly, a class should represent a single concept. The name for such a class should be a noun that describes that particular concept. If you cannot tell from the class name what an object is supposed to do, then you are probably on the wrong track. A common mistake for people who are used to writing functions is to turn an “action” into a class. For example, if your homework assignment is to calculate payroll checks, you might be tempted to write a class ComputePaycheck. However, can you picture a ComputePaycheck object? Paycheck would be a better class to create, and one of its methods would be compute.

1. Consider the following problem description and decide what classes you should use to implement it. For each class also list its methods and instance fields.
A user places coins in a vending machine and selects a product by pushing a button. If the inserted coins are sufficient to cover the purchase price of the product, the product is dispensed and change is given. Otherwise, the inserted coins are returned to the user.

Class VendingMachine

private ArrayList<Product> products;
private Coins coinList;
public VendingMachine();
public VendingMachine(ArrayList<Product> productList);
public void addProduct(String name, float price);
public boolean deleteProduct(String name);

public boolean getProduct(String name);
public void insertCoin(String name);
public Coins despenseProduct(Product product,

 Coins coinsInserted);

Class Product

private String productName;
private float price;
public Product();

public Product(String name, float sellPrice);

(methods include get and set for instance variables)

Class Coin

private String coinType;
private int coinValue;
public static variables for coinTypes and coinValues

public Coin()

public Coin(coinType, coinValue);

(methods include get and set for instance variables)

Class Coins

private ArrayList<Coin> coins;

public Coins();
public Coins(ArrayList<Coin> theCoins);
public void addCoin(Coin aCoin);
public Coin getCoin(int position);
public void removeCoin(int position);
public Coins computeChange(double price);

Class Transaction

private Product theProduct;

private Coins coinsPaid;
public Transaction();
public Transaction(Product aProduct,

 Coins coinsInserted);

public Coins getChange();

(methods include get and set for instance variables)

2. Consider the following problem description and decide what classes you should use to implement it. For each class also list its methods and instance fields.
Employees receive their biweekly paychecks. They are paid their hourly rates for each hour worked; however, anyone who worked more than 40 hours per week is paid overtime at 150% of the regular wage.

Class Employee

private String name;

private String ssn;
public Employee()

public Employee(String empName, String empSsn)
(methods include get and set for instance variables)

Class Paycheck

private float hourlyRate;
private float hoursWorked;
private Employee payee;
public Paycheck()

public Paycheck(float hours, float rate)

public float getPayAmount()
(methods include get and set for instance variables)

3. Consider the following problem description and decide what classes you should use to implement it. For each class also list its methods and instance fields.
Customers order products from a store. Invoices are generated to list the items and quantities ordered, payments received, and amounts still due. Products are shipped to the shipping address of the customer, and invoices are sent to the billing address.

Class Store

private Address storeAddress

private int storeNumber

(methods include constructors (default and explicit) and get and set methods for instance variables)

Class Customer

private Address billingAddress

private Address shippingAddress

private int customerNumber

private float balanceDue

(methods include constructors (default and explicit) and get and set methods for instance variables)

Class Order

private Customer customer

private String orderDate

private String orderStatus

private ArrayList<InvoliceLine> invoiceLineCollection;

(methods include constructors (default and explicit) and get and set methods for instance variables)

public void addInvoliceLine(InvoiceLine involice)

pulbic boolean deleteInvoiceLine(InvoliceLine involice)

public invoiceLine getInvoiceLine(Item item)

public boolean shipOrder()

Class Address

private String attentionLine

private String line1

private String line2

private String city

private String state

private String zip

(Methods include constructors (default and explicit) and get and set methods for instance variables)

Class Item

private int number

private String description

private float cost

(Methods include constructors (default and explicit) and get and set methods for instance variables)

Class InvoiceLine

private Item item

private float quantity

(Methods include constructors (default and explicit) and get and set methods for instance variables)
PAGE
1
Week 12 Learning Activities

