COMP 111 - Week 4 Learning Activities
Activity 4-1

Outcome: Define encapsulation and abstraction in the context of object-oriented programming.

Abstraction is a design process by which you take a complex situation and either ignore or conceal less important details. This approach is vital to creating tractable software objects due to the fact that real life objects are extremely complicated. For example, consider a person. What kinds of attributes are associated with someone you know?

[image: image1]
Object-oriented (OO) programming typically tries to model software objects that correspond directly to counterparts in the “real-world.” An abstraction can be defined as “a named collection of attributes and behaviors relevant to modeling a given entity for some particular purpose.” (http://people.cs.vt.edu/~kafura/cs2704/abstraction.html) Suppose you were asked to write software to keep track of college students. Most of the attributes and behaviors listed above are not useful for this assignment. By using abstraction, you can consider a person to be just:

[image: image2]
Because for this situation you only care about the student’s name, gpa, major, and current schedule, you can ignore the other information. What if we were asked to develop some medical patient tracking software? What attributes and behaviors would be relevant in that situation? Try this one for yourself:

Name

Address

Phone numbers
SSN

Emergency contact information

Primary physician

Insurance information

Medical history
Pertinent family medical history
Real software objects need to model not only the “attributes” of a system but the behaviors of the system as well. The abstraction process looks something like the following picture:

[image: image3]
The data within a software object models the attributes of a real world object, while its methods simulate the needed behavior.

What kind of attributes and behaviors would you expect to consider in the following situations? (Note that you do not need to write code for this.)

· Define a Clock that will keep track of time

· Define a BankAccount that manage a single account in a bank.

· Define a Book to be used with a library’s cataloging system

Clock attributes:
Hours

Minutes

Seconds

Clock behaviors:

Tick

SetHours

SetMinutes

SetSeconds

DisplayTime

BankAccount attributes:

AccountNumber

DateOpened

Balance

OwnersName

OwnersSocialSecurityNumber

Password

BankAccount behaviors

Deposit

Withdraw
OpenAccount

CloseAccount

BalanceInquiry

PayInterest

ChargeInterest

SendStatement

Book attributes:

Title

Author

Library of Congress Number

Dewey Decimal Number

International Standard Book Number

CheckoutStatus

Location

Book behaviors:

AddBook

DeleteBook

CheckoutBook

ReturnBook

UpdateLocation
Activity 4-2:

Outcome: Apply the principles of encapsulation and abstraction to define the public interface of a class.

Once you have used abstraction to identify what should be visible and what should be hidden, encapsulation is the process of packaging the data and methods in such a way that what should be hidden is hidden and what should be visible is visible.

For instance, consider the example of writing software for card games. It might be nice to have an object to represent a playing card, and when thinking of a single playing card, you might have the mental image of a face value (rank) and a suit. Thus, taking the easiest route, you might be tempted to create a class like the following:

public class Card

{

 public int rank; // 2 to 14

 public char suit; // ‘D’, ‘H’, ‘S’, ‘C’

}

Someone who was using your Card might have a block of code similar to the following:

...

Card c = new Card();

c.rank = 3;

c.suit = ‘D’;

...

This code implements the creation of a new card, specifically the 3 of Diamonds. Although this design of the Card class is simple, there are several problems with the design. Can you identify any potential problems that might come up? (Hint: Software is constantly changing to meet new and or changing needs.)

One issue might be the fact that there is nothing there to prevent someone from assigning bad values to the Card, such as:

...

Card c = new Card();

c.rank = -1;

c.suit = ‘O’;

...

In this case, you still have an instance of a Card, but the data values no longer makes sense in the context of a standard deck of playing cards. A common approach to OO design is that data should almost always be specified as private, and methods should be employed to access or modify that data. The most often seen approach is the use of accessor and mutator methods as in the code shown below:

public class Card

{

 private int rank; // 2 to 14

 private char suit; // ‘D’, ‘H’, ‘S’, ‘C’

 public int getRank() { return rank; }

 public char getSuit() { return suit; }

 public void setRank(int r) { rank = r; }

 public void setSuit(char s) { suit = s; }

}

Does using these get and set methods fix the problem? No, all it does is force the person using your Card to change the code to the following:

...

Card c = new Card();

c.setRank(-1);

c.setSuit(‘O’);

...

If you truly wish to safeguard the information, then it is up to you to take action against bad data within the methods. There are many ways of doing the “error handling,” but that is not important for the time being. Keeping the data private is a good starting point but is not sufficient for a good design.

What if, as the creator of the Card class, you decided it would be better to redesign the card. Perhaps you feel that, to be more flexible across various card games, you should use an approach like the following:

,

public class Card

{

 private int code; // D = 0->12, H = 13->25, etc.

 public int getCode() { return code; }

 public void setCode(int c) { code = c; }

}

What might be the pros and cons for this design as compared to the other?

Now, think of the case of someone who has already been using your original Card class. What happens to that person’s code now? It no longer works! The client had to know the internal structure or implementation details of what you have designed in order to write his or her own code. Providing the get and set methods is no better than just leaving the data public in terms of truly making the class an abstraction. In other words, the class no longer represents the concept of a playing card but, rather, a particular approach to implementing that concept.

Consider the following short definitions for example:

public class Card

{

 private int rank; // 2 to 14

 private char suit; // ‘D’, ‘H’, ‘S’, ‘C’

 public boolean isDiamond() { return suit == ’D’; }

 public void changeToDiamond() { suit = ’D’; }

 ...

}

public class Card

{

 private int code; // D = 0->12, H = 13->25, etc.

 public boolean isDiamond() { return code/13==0; }

 public void changeToDiamond() { code = code%13; }

 ...

}

These definitions allow someone to tell whether the card is a diamond or not, without knowing how the class was actually implemented behind the scenes. When designing your objects, you do not necessarily want get and set methods all the time. Focus more on what a client would need or would attempt to do. If there is a small range of possible outcomes or values, use specific method calls instead. For example, use isDiamond() rather than getSuit(). The former does not give away too many details about the implementation. However, this approach will not be practical in all cases. If there is a large range of values, such as the rank on a playing card, then it is best to follow the standard getX() and setX() pattern.

Look back to your previous outlines of the following situations; define an outline of these classes in Java. Do not fill in the implementations for the methods just yet, but you should decide which methods you will need.

· Write a Clock that will keep track of time.

· Write a BankAccount that will manage a single account in a bank.

· Write a Book to be used with a library’s cataloging system.

Clock class:
 public Clock()

 public Clock(int hours, int minutes, int seconds)

 public int displayTime()

 public void setHours(int hours)

 public void setMinutes(int minutes)

 public void setSeconds(int seconds)

 public void setTime(int hours, int minutes,

int seconds)

 public void tick()

BankAccount class:

 public BankAccount()

 public (double initialBalance)
 public void deposit(double amount)

 public void withdraw(double amount)
 public double getBalance()

Activity 4-3

Outcome: Implement simple classes and methods

Try fully implementing the three examples you have been thinking about:

· Write a Clock that will keep track of time.

· Write a BankAccount that will manage a single account in a bank.

· Write a Book to be used with a library’s cataloging system.

/**

 * Initial version of class Clock

 *

 * @author (John Fulton)

 * @version (20060524)

 */

public class Clock

{

 // instance variables

 private int hours;

 private int minutes;

 private int seconds;

 /**

 * Default constructor for objects of class Clock.

 */

 public Clock()

 {

 this.hours = 0;

 this.minutes = 0;

 this.seconds = 0;

 }

 /**

 * Explicit constructor for objects of class Clock.

 * @param hours int 24-hour clock 0 to 23

 * @param minutes int clock 0 to 59

 * @param seconds int clock 0 to 59

 */

 public Clock(int hours, int minutes, int seconds)

 {

 this.hours = hours;

 this.minutes = minutes;

 this.seconds = seconds;

 }

 /**

 * Overrides methods for Object

 *

 */

 public String toString()

 {

 return(hours + ":" + minutes + ":" + seconds);

 }

 /**

 * Set instance variable

 *

 * @param hours int value to replace instance variable

 */

 public void setHours(int hours)

 {

 this.hours = hours;

 }

 /**

 * Set instance variable

 *

 * @param minutes int value to replace instance variable

 */

 public void setMinutes(int minutes)

 {

 this.minutes = minutes;

 }

 /**

 * Set instance variable

 *

 * @param seconds int value to replace instance variable

 */

 public void setSeconds(int seconds)

 {

 this.seconds = seconds;

 }

 /**

 * Set hours, minutes and seconds

 *

 * @param hours int 24-hour clock 0 to 23

 * @param minutes int clock 0 to 59

 * @param seconds int clock 0 to 59

 */

 public void setTime(int hours, int minutes, int seconds)

 {

 this.hours = hours;

 this.minutes = minutes;

 this.seconds = seconds;

 }

 /**

 * Advances clock on second.

 * Rolls over 59 seconds to minutes

 * Rolls over 59 minutes to hours

 * Rolls over 23 hours to 0 hours

 *

 */

 public void tick()

 {

 seconds += 1;

 if (seconds >= 60)

 {

 seconds -= 60;

 minutes += 1;

 }

 if (minutes >= 60)

 {

 minutes -= 60;

 hours += 1;

 }

 if (hours >= 24)

 {

 hours -= 24;

 }

 }

}
Bank account class from Chapter 3 of big Java

/**

 A bank account has a balance that can be changed by

 deposits and withdrawals.

*/

public class BankAccount

{

 /**

 Constructs a bank account with a zero balance.

 */

 public BankAccount()

 {

 balance = 0;

 }

 /**

 Constructs a bank account with a given balance.

 @param initialBalance the initial balance

 */

 public BankAccount(double initialBalance)

 {

 balance = initialBalance;

 }

 /**

 Deposits money into the bank account.

 @param amount the amount to deposit

 */

 public void deposit(double amount)

 {

 double newBalance = balance + amount;

 balance = newBalance;

 }

 /**

 Withdraws money from the bank account.

 @param amount the amount to withdraw

 */

 public void withdraw(double amount)

 {

 double newBalance = balance - amount;

 balance = newBalance;

 }

 /**

 Gets the current balance of the bank account.

 @return the current balance

 */

 public double getBalance()

 {

 return balance;

 }

 private double balance;

}

Activity 4-4
Outcome: Create API documentation for object interfaces.

Start the BlueJ development environment. Create a new project and give it the name BankAccount. This will be your project for this exercise.

Right-click in the main window and create a new class called BankAccount. This will be modeled after your thought process in the previous activity. Double-click on the new class to open the editor. You will see that some information has already been added for you. At the very top, you should see the following header before the beginning of the class:

/**

 * Write a description of class BankAccount here.

 *

 * @author (your name)

 * @version (a version number or a date)

 */

public class BankAccount

You may remember reading about this comment notation in your textbook. The /** delimiter simply introduces a multi-line comment since it starts with /*. However, the extra asterisk marks this as a javadoc comment. Java has a special utility called javadoc that can be used to generate Web page documentation for Java programs. The comment above the class describes the purpose of the class as a whole. You can add useful tags that help identify information such as the author and version number. Modify the default description with something more appropriate, such as: “A bank account has a balance that can be changed by deposits and withdrawals.”

Next you will see a place to add your instance variables:

// instance variables - replace the example below ...

private int x;

Instead of having a variable called x, it would be more appropriate to define a variable to store the balance of the account. Change the default code to:

private double balance;

The next section will be the pre-generated constructor for the class:

/**

 * Constructor for objects of class BankAccount

 */

public BankAccount()

{

 // initialize instance variables

 x = 0;

}

Since you have decided to use the double variable balance rather than the int x to store the balance of the account, you should modify the constructor to say:

balance = 0.0;

Lastly, you will see a sample method that has been provided for you:

/**

 * An example of a method - replace this comment

 *

 * @param y a sample parameter for a method

 * @return the sum of x and y

 */

public int sampleMethod(int y)

{

// put your code here

return x + y;

}

Although this method does not make sense for a BankAccount and you should remove it, it is useful to note the two additional parts within the comment. The @param is a javadoc comment to identify the name and description of a parameter to the method. If you have multiple parameters, they will each be identified on a separate line within the comment. Also, the @return field identifies the description of the return value if appropriate.

Remove the sampleMethod and add your own methods as specified in your design for the BankAccount. Be sure to add complete javadoc comments for each one. Once you have this done, make sure the code compiles properly and close the editor.

On the BlueJ toolbar, select “Project Documentation” under Tools. By doing this, the javadoc utility will be run automatically, and a set of Web pages will be generated for your project based on the comments in your file.
Activity 4-5
Outcome: Employ a testing framework to validate implemented classes.

From the BlueJ Project menu select "Open Project" and browse to the COMP111/Activities/Week04 folder on your computer. Select and open the project named "Taxi."
The project and its classes create a simple model of a taxi cab service in town. The classes are already written. The general idea of each is as follows:

TaxiCab – This class represents a normal, run-of-the-mill cab to take people from one place to another. Each cab has a cab number and a current location. Each cab also keeps track of whether it already has a passenger and whether it is for hire. In addition, if a cab has been hired, then it will also have both a pick-up and a drop-off destination.

Example:

TaxiCab cab = new TaxiCab();

cab.setCabNumber(5); //Setting the cab number to 5

cab.setForHire(true); //Sets the cab so that it is for hire

cab.setHasPassenger(false); //Sets the cab so that it does
 //not have a passenger

cab.setCurrentLocation(0.0,0.0); //Sets the cab with a
 //current location

TaxiGarage – This class represents a garage that holds taxis. At the start of the day the garage has 10 taxis, and it is considered to be at loc 0.0,0.0. It knows whether there are taxis available and, if so, how many. Cabs can also be requested.

Example:

TaxiGarage garage = new TaxiGarage();

TaxiCab cab = garage.getTaxi(); //Requests a taxicab from
 //the garage

TaxiDispatch – This class represents the dispatch/control for the taxi company. Generally, everything will happen through the dispatch. At the start of the day, there are 0 taxis out in the field. When a call comes in, it should assign the closest available taxi to that person. If none is available in the field, a taxi is taken from the garage and assigned the task. As time passes, dispatch can be instructed to go forward a particular number of minutes.
Example:
TaxiDispatch dispatch = new TaxiDispatch();

TaxiGarage garage = dispatch.getGarage(); //If you are
 //interested in the garage that the dispatch is using

TaxiCab cabOne = requestTaxi(4,2,7,0); //Request a taxi for
 //pickup at 4,2 with destination 7,0.
//By default the current time will be 0 because that is //when the day starts. We can adjust this by whatever

//number of minutes we wish.
dispatch.advanceTime(10); //Moves time forward 10 minutes

Taxi Movement:

The city is laid out on a perfect grid. Each distance of 1 is a city block, and the taxis can only drive on the roads. It takes one minute to travel a block, and it takes a minute to pick up or drop off the passenger. For example, suppose the taxi starts at (0,0), and the pickup location is (2,3) with a drop off of (2,5):

at t=0: at t=1: at t=2:

..D.. ..D.. ..D..

.....

..P.. ..P.. ..P..

..... C....

..... C....

C....

at t=3: at t=4: at t=5:

..D.. ..D.. ..D..

.....

C.P.. .CP.. ..C..

.....

.....

.....

at t=6: at t=7: at t=8:

..D.. ..D.. ..C..

..... ..C..

..C..

.....

.....

.....

at t=9:

..C..

.....

.....

.....

.....

.....

At time = 5minutes, the taxi has arrived at the location of the passenger but has not yet picked up the person. At time = 6minutes, the passenger is in the cab, and the cab starts driving toward the destination. At time = 8minutes, the cab has arrived at the destination but is not empty until time = 9minutes.

Notes:

Although people would not normally interact with the taxicab or garage directly, the corresponding classes in this example can be tested on their own. If I remove a taxi cab from the garage, do I have one less than when I started? If there are no more taxis in the garage, and I ask for one, what happens? If I tell the taxi to go to a specific location, does it do so?

Create a series of tests for these classes to verify that each works correctly. Be sure that your tests provide sufficient coverage for all the public methods and the scenarios in which these classes might be used.

Note: this exercise includes some concepts/structures we do not use in this course, i.e. vectors and exceptions. Do not get hung up on the specifics of the domain class code and instead think about the unit testing of the classes (keeping in mind you will not have to code JUnit methods with exception handling in this course). Focus on unit testing the TaxiCab class.
TaxiCab class unit tests:

public class TaxiCabTest extends junit.framework.TestCase

{

 public void testCreateTaxiCab()

 {

 TaxiCab taxiCab1 = new TaxiCab();

 assertNotNull(taxiCab1);

 }

 public void testTaxiCabNumber()

 {

 TaxiCab taxiCab1 = new TaxiCab();

 taxiCab1.setCabNumber(456);

 assertEquals(456, taxiCab1.getCabNumber());

 }

 public void testCurrentLocation()

 {

 TaxiCab taxiCab1 = new TaxiCab();

 taxiCab1.setCurrentLocation(4, 7);

 assertEquals(4, taxiCab1.getCurrentLocationX());

 assertEquals(7, taxiCab1.getCurrentLocationY());

 }

}
TaxiDispatch class unit tests:
public class TaxiDispatchTest extends junit.framework.TestCase

{

 public void testCreateDispatch()

 {

 TaxiDispatch taxiDisp1 = new TaxiDispatch();

 assertNotNull(taxiDisp1);

 }

 public void testDispatchOneCab() throws TaxiNotAvailableException
 {

 TaxiDispatch taxiDisp1 = new TaxiDispatch();

 TaxiCab taxiCab1 = taxiDisp1.requestTaxi(1, 1, 5, 5);

 assertNotNull(taxiCab1);

 }

 public void testInitialCabPosition() throws TaxiNotAvailableException
 {

 TaxiDispatch taxiDisp1 = new TaxiDispatch();

 TaxiCab taxiCab1 = taxiDisp1.requestTaxi(1, 2, 3, 4);

 taxiDisp1.advanceTime(3);
 assertEquals(1, taxiCab1.getCurrentLocationX());

 assertEquals(2, taxiCab1.getCurrentLocationY());
 assertEquals(1, taxiCab1.getPickupLocationX());

 assertEquals(2, taxiCab1.getPickupLocationY());
 assertEquals(3, taxiCab1.getDailyTimeInOperation());
 }
}
Two different operations required for each creation.

Information about the whole deck of cards represented in a single structure.

Difficult to determine which cards “used” and which ones are “not used”

No editing of valid suits and ranks

Designation of cards is not as intuitive and visible as other design.

Still need to create checking for valid codes

Easier to check for “used’ and “not used” cards.

Simple random number generator could be used for “dealing” cards.

Implementation is depended upon internal data representation.

PAGE
18
Week 4 Learning Activities

