COMP 111 - Week 5 Learning Activities
Activity 5-1

Outcome: Distinguish between instance fields, local variables, and parameter variables in terms of their use, scope, and lifetime.

For additional information about scope, refer to the following Web page:

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/scope.html
In the following class, label the different types of items: instance fields, local variables, and parameter variables:
public class Cheese

{
 // begin scope of int age
 private int age = 12;

 public void displayType()

 {
 // begin scope of String name
 String type = "Cheddar";
 System.out.println("This cheese is a " + name +
 "and its age is " + age);
 } // end scope of String name

 public String getType()

 {
 return type; // this causes an error
 }

} // end scope of int age

Instance fields:
age

Local variables:

type (in displayType method, type in getType will cause a compile error)
Parameter variables:

None for the two methods in the Cheese class, but the statement:

"This cheese is a " + name + "and its age is " + age
is a parameter to System.out.println (PrintStream method)

In the following class, label the different types of items: instance fields, local variables, and parameter variables. Which declarations of n are legal, and which are illegal?

public class X

{

 public int f()

 {

 int n = 1;

 return n;

 }
Local variables: n (legal, will override this.n)
Parameter variables: none

 public int g(int k)

 {

 int a;

 int n = 1;

 a = a + n;

 return a;

 }
Local variables: a, n (a used before initialized, will cause a compile error, n is legal)

Parameter variables: k (note that variable is not used)
 public int h(int n)

 {

 int b;

 return b;

 }
Local variables: b (used before initialized, will cause a compile error)

Parameter variables: n (is legal, willl override this.n but note that variable is not used)
 public int k(int n)

 {

 int k = -n;

 int n = (int) (Math.sqrt(k));

 return n;

 }
Local variables: k, n (n will cause a compile error, can’t redefine since that identifier is already declared as a parameter)

Parameter variables: n (is legal, will override this.n)
 public int m(int k)

 {

 int a;

 int n = 1;

 a = a + n;

 n = k;

 a = a + n;
 return a;

 }
Local variables: a, n (a is used before initialized, will cause a compile error, n is legal and will override this.n)
Parameter variables: k

 private int n;

Instance fields: n (is legal and will automatically be initialized to 0, note that it is not used by any of the methods in the class)
}

Activity 5-2
Outcome: Distinguish between implicit and explicit parameters.

What are the implicit parameters, explicit parameters, and return values in the method call river.length()? (Assuming river is a String object)

Implicit: river
Explicit: none

Return: int

What are the implicit parameters, explicit parameters, and return values in the method call greeting.replace(“World”,”David”).length()? (Assuming greeting is a String object)

Two calls

(1)

Implicit: greeting

Explicit: strings “World” and “David”

Return: String

(2)

Implicit: string result from (1)

Explicit: none

Return: int

Activity 5-3:

Outcome: List and describe primitive data types in Java.

Alice had returned from her trip down the rabbit hole years ago. Having grown up through her adventures, she eventually and enthusiastically turned her attention to college. Although the unique experiences she had undergone made her fascinated with philosophy and logic, a required programming course left her unsettled. Alice found the rigid syntax quite vexing and despite being good at abstract thinking, the principles of Java remained out of her reach (perhaps she inhaled too much second-hand smoke from the caterpillar).

Frustrated, she worked hour after hour at her computer, trying to write even the simplest program for a homework assignment. All those funny symbols and concepts were beginning to make her mind just fog over. Knowing she wasn’t getting anywhere, she decided to take a break, listen to some music, and let her thoughts settle. Back when Alice was partying with the white rabbit, she had picked up a taste for indie music. The rabbit had given her an i-watch, which was a nifty device that told the time and played mp3s. By now, though, everything on there was quite old, so, using her computer, she went on a search to download newer songs off the Internet.

Since Alice didn’t have a lot of computer experience, it was not long before her computer was infected with spy-ware and other nasty computer bugs. Her simple search for music was making her even more frustrated as the computer began to run slower and popup advertisements filled her screen. Collapsing tiredly onto the desk, she closed her eyes and sighed deeply, passing off into sleep from sheer exhaustion. An hour later, Alice lifted her head up, eyes fluttering open, to find herself in a patch of soft green grass, her room and computer nowhere to be seen. The scene was eerily familiar – rolling hills and a bright blue sky filled with clouds. It was like a picture out of a window that she looked at everyday. That is when Alice realized that she had gone through the monitor glass. Picking herself up, she looked around the landscape, spying at what appeared to be a house off in the distance.

As she explored her way through the meadow, the building grew larger and larger as it came into view. In and of itself it was a small plain cottage. The roof was manila in color, as if someone had placed an open, upside down folder on top of the structure to act as a roof. A front gate and fence separated the home from a bus route that Alice had only just noticed because of a nearby sign proclaiming this to be route 800M. The mailbox was unusually long, having the address written down the length of its side:

The Mad Hacker

\Programs\1337 Databus Rd\Hacker House
“The Mad Hacker,” she muttered to herself. “I wonder if he is related . . .”

“Yes, I am, dear Alice. My cousin told me quite a bit about you,” said a voice from nowhere, surprising the girl. Looking up she saw a small figure waiting around the corner of the house as if expecting her to come over. Slipping past the gate, Alice made her way around the side into a small garden. A table for two was already there with a pot of tea ready. “How did you . . .?” she started, surprised both in how he knew she was there and how he seemed to have expected her as well. Her eyes just stared at the label on his hat, “1010/110,” waiting for his reply.

“Spy-ware,” he replied stepping closer. “You have it all over you. Nasty little bugs.” Taking out a small crystal perfume bottle, he gave the bulb a squeeze. The cloud of smoky mist fell over Alice. Not even one cycle later, small critters quickly scurried off her, having been hiding on her someplace. “You were quite infected; you should have seen the size of the wormhole you fell through.” Alice blinked a few times as she processed all of the information.

“Tea?” he proposed.

“Yes, that would be lovely,” she replied with a smile. The Mad Hacker held out his hand as if waiting for something – which only puzzled her more. Replying to the confusion he asked, “Your cup?”

“Oh! Silly me!” she exclaimed realizing he was quite right. She then turned her attention to the table. “I’m afraid I don’t have one here.”

“Of course, you must declare your cup first!”

“Declare my cup?” Alice replied.

“Quite. A cup is like a variable. It has a size, and it can hold something, but you need to decide what you want first.” the hacker intoned. “You have been to a teahouse before I presume. They have different sizes of cups of tea: small, medium, large, extra large. Variables are like that, too. They have different sizes: byte, short, int, and long.”

Although she wasn’t far into her programming course, Alice remembered some of the words and was following along as best as she could.

Continuing, he explained, “Well, instead of ordering an extra large orange-and-spice tea, you might ask for an int with the number 27, and that is what you would get – an int-sized cup with the number 27 in it.”

Somewhat following along, she then asked, “But not everything is a number, let alone an integer. How would I order those?”

“Yes, you are indeed quite correct,” he answered. “Floating-point numbers have their own sizes: float and double. Characters have char, and boolean can hold “true” or “false.” Your cup will vary depending on what you want and its size. The idea is like what happens when you order a cup of tea. You can get a tea in a variety of sizes, and the cups would be almost identical except that one may be bigger or smaller than the other. Another time, you might want something else, and the cup might look entirely different.”

“How big are they? I’m not sure how much I can have right now,” Alice asked inquisitively.

“A byte is 8 bits; a short is 16 bits; an int is 32; and a long is 64. The two floating point cups, float and double, are 32 and 64 bits, respectively.”

“Oh, I think I understand. May I have an int please? I think a long is just too much for me,” she asked with a smile, remembering her course textbook that had a chart with the various types and what they could hold.

With a grin, the Mad Hacker just said, “You forgot to name your cup.”

Laughing, she understood and replied, “int myCup = 17;” Thereupon, a fragile teacup appeared in her hand with the label “myCup” written in gold letters on the side. Carefully taking the cup, the Mad Hacker poured the right amount of tea and handed it back.

What data types might you use in the following situations? Explain why you chose the type you did.

To store an amount of money:

float or double

To store the population of a country:

int or long
To store the population of the world:

long

To calculate the area of a circle:

double
To store a person’s name:

String

To indicate whether or not you found a piece of information:

boolean

Challenge
Many centuries ago in India, a very smart man is said to have invented the game of chess. This game greatly amused the king, and he became so enthralled with it that he offered to reward the inventor with anything he wished, up to half his kingdom and his daughter's hand in marriage.

Now, the inventor of the game of chess was quite intelligent and not a little greedy. Not being satisfied with merely half the kingdom, he asked the king for the following gift:

"Mighty King," he said, "I am but a humble man and would not know what to do with half of your kingdom. Let us merely calculate my prize as follows: Put onto the first square of the chessboard a single grain of wheat. Then onto the second square of the chessboard put two grains, and onto the third square of the chessboard put twice two grains, and so on until you have covered the board with wheat."

Upon hearing this, the king was greatly pleased for he felt he had gotten off rather cheaply. He rapidly agreed to the inventor's prize. He called for a bag of wheat to be brought to him, and when it arrived he began counting out wheat. However, he soon used up the first bag and was not yet halfway across the board. He called for a second and a third and more and more, until finally he was forced to admit defeat and hand over his entire kingdom for lack of sufficient wheat with which to pay the inventor.

What data type would you need to store the amount of wheat the king needed?
long

Activity 5-4

Outcome: Utilize modifiers static and final to define constants.

The program below has problems because using “magic number” makes it hard to maintain and debug:

double yards = 3.5;
double feet = yards * 3;
double inches = feet * 12;

System.out.println(yards + "yards are" + feet + "feet");
System.out.println(yards + "yards are" + inches + "inches");

Modify the program so that it uses constants to improve legibility and make it easier to maintain.

public class Activity4_5

{

 public static void main()

 {

 final double feetInYard = 3.0;

 final double inchesInFoot = 12.0;

 double yards = 3.5;

 double feet = yards * feetInYard;

 double inches = feet * inchesInFoot;

 System.out.println(yards + "yards are" + feet + "feet");

 System.out.println(yards + "yards are" + inches + "inches");

 }

}

Activity 5-5

Outcome: Apply operators and Java library methods to compute arithmetic results.

Note: Appendix F of the textbook contains a chart showing the order of precedence of Java operators.
Write the following expressions in Java, making sure to declare any variables that you need:

[image: image1.wmf]2

0

0

2

1

gt

t

v

s

s

+

+

=

c = s + v * t + 1 / 2 * g * t * t;

[image: image2.wmf])

(

4

2

1

2

2

m

m

p

a

G

+

=

p

double final PI = 3.1415;

g = 4 * PI * PI * a / p * p * (m1 + m2);

[image: image3.wmf]g

cos

2

[

2

2

ab

b

a

C

-

+

=

c = Math.sqrt(a * a + b * b – (2 * a * b * Math.cos(y)));
Explain the difference between n = (int) x; and n = (int) Math.round(x);
n = (int) x; casts x as an integer and truncates the result
n = (int) Math.round(x); rounds the value x and then converts (casts) that value as an integer
Assuming x is a double of value 4.5, for the first statement the value of n is 4 and for the second statement the value of n is 5
Assume the following declarations:

double x = 2.5;

double y = -1.5;

int m = 18;

int n = 4;

Calculate the values of the following expressions:

a. x + n * y – (x + n) * y

b. m / n + m % n

c. 5 * x – n / 5

d. Math.sqrt(Math.sqrt(n))

e. (int) Math.round(x)

f. (int) Math.round(x) + (int) Math.round(y)

g. 1 – (1 – (1 – (1 – (1 – n))))

a. 6.25

b. 6

c. 12.5

d. 1.4142135623730951

e. 3

f. 2

g. -3

PAGE
10
Week 5 Learning Activities

_1173003548.unknown

_1173003685.unknown

_1173003381.unknown

