COMP 111 - Week 7 Learning Activities

Activity 7-1

Outcome: Use if/else statements to implement decisions

Following her discourse with the cat, Alice kept along the route until she saw the beginnings of what appeared to be a forest. The path seemed to go through the woods – perhaps to a town on the other side. However, as she got closer, the large dark trees seemed to stretch high into the sky. The edges did not resemble the soft but protective bark that she was familiar with. Instead, the trees were jagged and sharp, splitting into identical pairs every so many feet. The treetops that normally looked so beautiful to her, with soft leafy greens and scattered sunlight, looked menacing here. Clusters of trees had their branches crisscrossing with one another as they grew higher, so much so that she couldn’t even see the sky while under them.

The very sight of the path ahead was dark and foreboding. A tumult of smoke billowed out from behind a few trees partially obscuring the dim light even more. Perhaps, she thought, there would be a cottage there with someone that could give directions. It wasn’t too far into the woods, so she could always turn around and get out to the sunlight without being lost. Approaching as quietly as a door mouse, she peeked around of the heavy branches, seeing no building at all. Sitting upon a large rock was an enormous caterpillar. The creature sat there, quite languidly puffing away at the contraption beside him. Believing herself to be safe enough, she stepped out into view and looked at him.

“Excuse me, I was wondering . . .,” Alice started, but was quickly cut off.

boolean knowGirl = false;

String girlsName;

if (knowGirl == false)

{

 System.out.println("Please introduce yourself:");

 girlsName = Scanner.getNext();

}

Alice, slightly stunned, had to stop and think about what the caterpillar just said. She could understand parts of it but not quite everything. He seemed to be asking her a question about her name, but she didn’t understand what all of the syntax meant. “I’m called Alice, but I don’t understand everything you just said.”

Clearing his throat a bit to get some of the smoke out, he replied, “I simply said that, if I don’t know you, you should introduce yourself first.”

Alice thought about that for a second and exclaimed, “Oh! So you were using a conditional statement. You only wanted me to introduce myself on the condition that you didn’t already know me! I’m not very familiar with how those work.”

As if to respond to the inquiry, the caterpillar simply spoke:

if (condition is true)

{

 //Do body

}

“That seems fairly simple enough,” Alice said as she thought aloud. “If the condition is true, I do whatever is in the body. What about when I want to do one thing if something is true, and something else if it is not? Like what if you know me?”

if (knowGirl == false)

{

 System.out.println("Please introduce yourself:");

 girlsName = Scanner.getNext();

}

else

{

 System.out.println("Hello " + girlsName + ", how are you?");
}

Almost as though a light bulb went off, Alice quipped, “Oh! If you didn’t know me, you would ask me to introduce myself and wait for my name; otherwise, you would say ‘hello’ to me and ask how I am doing!” Giggling to herself as she began to understand more, she continued, “And if there are more than just two choices?”

if (knowGirl == false)

{

 System.out.println("Please introduce yourself:");

 girlsName = Scanner.getNext();

}

else if (knownToGirl == false)

{

 System.out.println("Hello " + girlsName +

 ", my name is D.Cission");

}

else

{

 System.out.println("Hello " + girlsName + ", how are you?");
}

This seemed to make sense to Alice, but she had to think about it slowly. “If. . . you didn’t know me, you would ask me for my name. Otherwise, you already knew my name, but if I didn’t know you, you would introduce yourself. Otherwise, you would ask how I am doing, and only one of those three things would happen, whichever one would come first.”

if (1 < 2)

{

 System.out.println("Correct");

}

“That’s an odd way of saying it, since your condition would always be true, but I understand what you mean. I can compare numbers by using <, <= , == , >=, and > as long as it makes sense for the result to be ‘true’ or ‘false’.” Pausing for a moment and then exclaiming, “And I remember! It’s && for ‘and,’|| for ‘or,’ and ! to mean ‘not.’ I am trying to go someplace. I was wondering if you could tell me where to go?”

boolean careWhereToGo = false;

String destination;

if (careWhereToGo==false)

{

 System.out.println("Then it doesn’t matter which way.");

}

else

{

 System.out.println("Where do you wish to go:");

 Destination=Scanner.getNextLine();

}

Alice thought about this for a moment, as she really didn’t know where anything was. She may have understood more about making decisions now, even if she was confused about her situation. Thus, she politely thanked the caterpillar and just continued down the path.

1. Find the errors in the following if statements:

a. if quarters > 0 then System.out.println(quarters + " quarters");
b. if (1 + x > Math.pow(x, Math.sqrt(2)) y = y + x;
c. if (x = 1) y++; else if (x = 2) y = y + x;
a. boolean condition needs parentheses
"then" not used in Java

b. Missing a ")"
Must have same number of "(" and ")"
 c. x = 1 is an assignment operation, not a boolean
 expression. It should be x == 1. Likewise for x = 2.
2. Examine the following and determine what will be the output:

char grade = ‘B’;

if (grade == ‘A’)

 System.out.println("You got an A. Great job!");

else if (grade == ‘B’)

 System.out.println("You got a B. Good work!");

else if (grade == ‘C’)

 System.out.println("You got a C.");

else

 System.out.println("You got an F.");

You got a B. Good work!

3. Examine the following and determine what will be the output:

char grade = ‘a’;

if (grade == ‘A’)

 System.out.println("You got an A. Great job!");

else if (grade == ‘B’)

 System.out.println("You got a B. Good work!");

else if (grade == ‘C’)

 System.out.println("You got a C.");

else

 System.out.println("You got an F.");

You got an F.

4. Examine the following and determine what will be the output:

int x = 10,y = 5;

if (x == 10)

 if (y == 10)

 System.out.println(“*****”);

 else

 System.out.println(”#####”);

System.out.println(”$$$$$”);

#####

$$$$$

5. Examine the following and determine what will be the output:

int x = 10, y = 5;

if (x == 10)

{

 if (y == 10)

 System.out.println(“*****”);

}

else

{

 System.out.println(”#####”);

 System.out.println(”$$$$$”);

}

<<prints nothing>>

6. Write a piece of code that takes user input describing a playing card and prints the full name. For example,

Enter the card notation: QS
Queen of Spades

import java.util.Scanner;
public class CardName

{

 public static void main()
 {

 Scanner thisInput = new Scanner(System.in);

 String typedInput;

 String suite;

 String card;

 System.out.print("Enter suite and card (like: QS or 7D): ");

 typedInput = thisInput.nextLine();

 // System.out.println(typedInput);

 card = typedInput.substring(0, typedInput.length() - 1);

 suite = typedInput.substring(typedInput.length() - 1,
 typedInput.length());

 // System.out.println(card);

 // System.out.println(suite);

 // card

 if (card.equalsIgnoreCase("A"))

 {

 System.out.print("Ace of ");

 }

 else if (card.equalsIgnoreCase("K"))

 {

 System.out.print("King of ");

 }

 else if (card.equalsIgnoreCase("Q"))

 {

 System.out.print("Queen of ");

 }

 else if (card.equalsIgnoreCase("J"))

 {

 System.out.print("Jack of ");

 }

 else

 {

 System.out.print(card + " of ");

 }

 // suite

 if (suite.equalsIgnoreCase("D"))

 {

 System.out.println("Dimonds");

 }

 else if (suite.equalsIgnoreCase("S"))

 {

 System.out.println("Spades");

 }

 else if (suite.equalsIgnoreCase("H"))

 {

 System.out.println("Hearts");

 }

 else if (suite.equalsIgnoreCase("C"))

 {

 System.out.println("Clubs");

 }

 else

 {

 System.out.println("some other suit");

 }
 }

}

Activity 7-2

Outcome: Apply relational operators to compare numeric data.

1. If n were declared to be an int and were assigned a non-negative value, the statement if (n / 10 % 10 == 3) System.out.println("Bingo!"); will display the message if and only if

A. n is divisible (divides evenly) by 3.
B. n is divisible (divides evenly) by 30.
C. The units' digit (also known as the 1's place) of n is 3.
D. The tens' digit of n is 3.
E. The remainder when n is divided by 30 equals 3.

D

2. Explain the difference between:

A. s = 0;

if (x > 0) s++;

if (y > 0) s++;

and

 B. s = 0;

if (x > 0) s++;

else if (y > 0) s++;

In A, s could be incrementd twice (if x > 0 AND y > 0)
In B, s could only be incremented once. (if (x > 0) OR (x <= 0 AND y > 0))

3. Write some code that translates a number between 0 and 4 into the closest letter grade. For example, the number 2.8 would be converted to B. Break ties in the favor of the better grade; for example, 2.5 should be a B.
public class Grade

{

 public Grade()

 {

 // constructor

 }

 public char getGrade(double inputGrade)

 {

 int roundedGrade;

 roundedGrade = (int) Math.round(inputGrade);

 if (roundedGrade >= 4)

 {

 return 'A';

 }

 else if (roundedGrade == 3)

 {

 return 'B';

 }

 else if (roundedGrade == 2)

 {

 return 'C';

 }

 else if (roundedGrade == 1)

 {

 return 'D';

 }

 else

 {

 return 'F';

 }

 }

}
public class GradeTest extends junit.framework.TestCase

{

 private Grade g;

 protected void setUp()

 {

 g = new Grade();

 }

 public void testGrades()

 {

 assertEquals('A', g.getGrade(3.5));

 assertEquals('B', g.getGrade(3.4));

 assertEquals('C', g.getGrade(1.5));

 assertEquals('D', g.getGrade(0.5));

 assertEquals('F', g.getGrade(0.499));

 assertEquals('F', g.getGrade(-1));

 assertEquals('A', g.getGrade(4.5));

 }

}
Activity 7-3

Outcome: Apply methods to compare strings and objects.

1. Explain the difference between the == operator and the equals method when comparing strings.
== checks the equivalence of the object references – are they both exactly the same string (two references to the same object)
.equals() checks if the contents of two strings are the same (same characters in the same order). This is what’s used for String comparison in almost all cases.
2. Explain how the lexicographic ordering of strings differs from the ordering of words in a dictionary or telephone book.
The lexicographic ordering (also known as dictionary ordering or alphabetical ordering) of strings differs from the ordering of words in a dictionary or telephone book in that uppercase characters will sort before lowercase characters, thus "Zebra" would preceed "alligator".
Activity 7-4

Outcome: Write nested if/else statements to implement complex logic.

1. Write some code that asks the user for the current year. The code should respond back with a message indicating whether the year is a leap year or not.
Leap years are “…years evenly divisible by 4, except for centennial years (those ending in -00), which receive the extra day only if they are evenly divisible by 400. Thus 1600, 2000 and 2400 are leap years but 1700, 1800, 1900 and 2100 are not.” (http://en.wikipedia.org/wiki/Leap_year)
import java.util.Scanner;

public class LeapYear
{

 public static void main()
 {
 Scanner theInput = new Scanner(System.in);

 boolean leapYear;

 int year;

 System.out.print("Enter year: ");

 year = theInput.nextInt();

 leapYear = false; // default

 if (year % 4 == 0) // all others are false

 {

 if (year % 100 == 0)

 {

 if (year % 400 == 0)

 {

 leapYear = true;

 }

 else // not divisable by 400

 {

 leapYear = false;

 }

 }

 else // not disvisable by 100

 {

 leapYear = true;

 }

 }

 if (leapYear)

 {

 System.out.println(year + " is a leap year.");

 }

 else

 {

 System.out.println(year + " is not a leap year.");

 }
 }

}

2. Write some code that asks the user for a date as three integers. The code should respond back with a message indicating whether the date is legal or not (that is, whether reasonable integers have been inputted for the month, day, and year).

Note, the class below can be improved by checking year to be > 0 and adding leap year logic for February (month is 2 and day is 29) per previous exercise.
import java.util.Scanner;

public class DateCheck
{

 public static void main()
 {
 Scanner theInput = new Scanner(System.in);

 int year;

 int month;

 int day;

 boolean validDate;

 System.out.print("Enter month (Ex: 11 for Nov.): ");

 month = theInput.nextInt();

 System.out.print("Enter day (Ex: 1 for first): ");

 day = theInput.nextInt();

 System.out.print("Enter year (Ex: 2006): ");

 year = theInput.nextInt();

 validDate = true;

 if (month < 1 || month > 12)

 {

 validDate = false;

 System.out.println("Invalid month: " + month);

 }

 if (day < 1)

 {

 validDate = false;

 System.out.println("Invalid day: " + day);

 }

 if (month == 9 || month == 4 || month == 6 || month == 11)

 {

 if (day > 30)

 {

 validDate = false;

 System.out.println("Invalid day " + day +

 " in month " + month);

 }

 }

 else if (month == 2) // february
 {

 if (day > 29)

 {

 validDate = false;

 System.out.println("Invalid day " + day +

 " in month " + month);

 }
 // add leap year checking here if day == 29
 }

 else // the rest are 31-day months

 {

 if (day > 31)

 {

 validDate = false;

 System.out.println("Invalid day " + day +

 " in month " + month);

 }

 }

 if (validDate)

 {

 System.out.println("Date is valid.");

 }

 else

 {

 System.out.println("Date is not valid.");

 }
 }

}
Activity 7-5

Outcome: Combine logical expressions using Boolean operators.
1. The Java expression !((b != 0) || (c <= 5)) is equivalent to:
a. (! (b = 0)) && (! (c > 5))
b. (b == 0) && (c > 5)
c. (b != 0) && (c <= 5)
d. ! ((b <> 0) && (c <= 5))
e. (b == 0) && (c <= 5)
“a” can’t be true because b = 0 is an assignment operation

“d” can’t be true because <> is not valid java

Build a truth table for the rest (until we find an answer)
	b != 0
	c <= 5
	(b != 0) || (c <= 5)
	!((b != 0) || (c <= 5))

	true
	true
	true
	false

	true
	false
	true
	false

	false
	true
	true
	false

	false
	false
	false
	true

	b == 0
	c > 5
	(b == 0) && (c > 5)

	false
	false
	false

	false
	true
	false

	true
	false
	false

	true
	true
	false

Answer: “B” is the same as the given expression

2. Complete the following truth table:
	p
	q
	r
	(p && q) || r
	!(p && (q || !r))

	false
	false
	false
	
	

	false
	false
	true
	
	

	false
	true
	false
	
	

	false
	true
	true
	
	

	true
	false
	false
	
	

	true
	false
	true
	
	

	true
	true
	false
	
	

	true
	true
	true
	
	

Add some columns for some intermediate results

	p
	q
	r
	p && q
	(p && q) || r
	!r
	q || !r

	false
	false
	false
	false
	false
	true
	true

	false
	false
	true
	false
	true
	false
	false

	false
	true
	false
	false
	false
	true
	true

	false
	true
	true
	false
	true
	false
	true

	true
	false
	false
	true
	true
	true
	true

	true
	false
	true
	false
	true
	false
	false

	true
	true
	false
	true
	true
	true
	true

	true
	true
	true
	true
	true
	false
	true

	p && (q || !r)
	!(p && (q || !r))

	false
	true

	false
	true

	false
	true

	false
	true

	true
	false

	false
	true

	true
	false

	true
	false

Activity 7-6
Outcome: Predict the output of code snippets that contain conditionals.

Consider the following code:

if (n > 10) System.out.print("*****");

if (n > 7) System.out.print("****");

if (n > 4) System.out.print("***");

if (n > 1) System.out.print("**");

System.out.println("*");

How many *s will be printed when the code is executed:

1. with n = 6?

3+2 = 5

2. with n = 20?

5+4+3+2 = 14

3. with n = 2?

2

4. with n = -1?

none

Using relational operators, formulate the following conditions in Java:

1. x is positive

x >= 0

2. x is zero or negative

x <= 0

3. x is at least 10

x >=10

4. x is less than 10

x < 10

5. x and y are both zero

x ==0 && y == 0

6. x is even

x % 2 == 0

Consider the following program:

String mixture = "";
boolean red = false;
boolean green = false;
boolean blue = false;

Scanner in = new Scanner(System.in);
System.out.print("Include red in mixture? (Y/N) ");
String input = in.next();
if (input.toUpperCase().equals("Y"))
 red = true;

System.out.print("Include green in mixture? (Y/N) ");
input = in.next();
if (input.toUpperCase().equals("Y"))
 green = true;

System.out.print("Include blue in mixture? (Y/N) ");
input = in.next();
if (input.toUpperCase().equals("Y"))
 blue = true;

if (!red && !blue && !green)
 mixture = "BLACK";
else if (!red && !blue)
 mixture = "GREEN";
else if (red)
{
 if (green || blue)
 {
 if (green && blue)
 mixture = "WHITE";
 else if (green)
 mixture = "YELLOW";
 else
 mixture = "PURPLE";
 }
 else
 mixture = "RED";
}
else
{
 if (!green)
 mixture = "BLUE";
 else
 mixture = "CYAN";
}
System.out.println("Your mixture is " + mixture);

What color results for each of the following inputs?

1. Y N Y

Your mixture is PURPLE

2. Y Y N

Your mixture is YELLOW

3. N N N
Your mixture is BLACK

PAGE
7
Week 7 Learning Activities

