COMP 111 - Week 8 Learning Activities

Activity 8-1

Outcome: List and describe the four components of all loops.

In time, the dim recesses of the woods gave way to a light. The dense groups of trees became diffused into scattered single sentinels, followed later by the opposite edge of the forest. A very tired Alice stood on the edge looking out over a barren rocky landscape devoid of vegetation and signs of life. The expanse looked bleak, but she kept going forward, glad enough to be out of the woods again. So far it felt like it had been a long day, but Alice could not tell how much time had passed. However, she did know that all this walking was beginning to make her tired.

As if some outside force read her mind, Alice came around a large boulder and saw a large ornate table on a flat slab. Both the slab and the table seemed to be made of pure marble, blending into the rocky nature of this place. Eight simple pedestals constructed with the same materials surrounded the table to give patrons a resting place. In addition, the table was already set up for tea. Delicate china teapots were in the middle, and every setting already had a full matching cup ready and waiting.

Sitting at one end of the table, were three figures: a mouse that was asleep and leaning over the table, a large hare that seemed quite full of energy, and the last figure, who was already familiar to her.

“Alice!” exclaimed the Mad Hacker upon seeing her emerge from around the boulder. “Please, join us for some tea.” Gesturing to the other two, “I’d like you to meet the Threadmouse and Sir Rabbitition.”

Giving a small curtsey, Alice then took a seat at one of the empty places and gave a closer glance at the table. There were funny symbols and scrawling that she couldn’t make out. Assuming for now that it was just decorative, she looked back at her companions.

They sipped at their tea and talked idly for a while. It could be seen that the cups were still quite full at this point because they were rather large. The lapin then said out loud making sure everyone could hear, “Fresh cup! Fresh cup! Move round! Move round!” and he promptly shifted a seat to his left. The volume at which he spoke the words was enough to wake the sleepy mouse sufficiently to move over a seat himself before slipping back into his dreams. The Mad Hacker gave the girl a smile and moved down one, making room where he previously had sat for Alice.

Alice looked at them quizzically but, not wanting to seem rude or clueless, she shuffled over to the now vacant seat. Things continued onward for a bit until the rabbit exclaimed again, and this process repeated. Alice by now was rested well enough and thought this strange behavior was a good enough signal that she should be on her way.

“I am afraid I must be going. The tea was quite delicious,” she said with a smile.

The hare looked at her and said, “You cannot leave! You cannot leave!”

The Mad Hacker, already expecting Alice to not fully understand, added with a gesture to the cup in front of her, “He means to say that you can’t leave yet; you haven’t finished your tea.”

“Oh, but I am quite full, and I should be on my way,” replied Alice as she tried to stand. However, as she attempted to remove herself from the seat to leave, she found that try as hard as she might, she could not move an inch.

Giving a bit of a knowing smile, the Mad Hacker continued, “You may wish to go, that is not in question, but you cannot go just yet because you haven’t finished your tea. Didn’t you read the table before you sat down?”

This was a very odd thing to hear, that she may want to go but can’t. If she wanted to go, she should be able to go quite easily enough, but seeing as she couldn’t seem to be able to, she looked back at the table. The symbols that had been there earlier were now readable:

while (myCup.isEmpty() == false)

{

 myCup.sip();

}

Seeing some type of programming there didn’t really surprise her as she was getting used to it. “This is a loop isn’t it?” she asked aloud to nobody in particular.

“Yes. Yes. Yes.” said Rabbitition, “As long as the condition is true, execute the statement!”

Alice thought back and vaguely remembered her class notes saying something like:

while (condition)

{

 statement

}

“So, you’re right . . . as long as my cup being empty is false, or in other words as long as it isn’t empty, I need to keep sipping,” she said happily and tried to drink the contents of the teacup.

As she almost finished her tea, the rabbit yelled out, “Fresh cup! Fresh cup! Move round! Move round!” Reluctantly putting the cup down, she moved over a seat. Finding the cup nearly empty, she drained the rest in one sip and moved to stand up to make her departure before finding that instead of her legs moving, her hand reached out for the kettle, pouring more tea into the cup.

“What’s happening?” she questioned in a panicked voice.

“Simple; read the table again where you are sitting.” the Mad Hacker replied.

There in small print it said:

while (myCup.isEmpty() == false)

{

 myCup.sip();

 myCup.refill();

}

Alice stammered for a moment, “I’m supposed to fill the cup after each time I take sip, yet I can’t leave until it is empty?”

“Quite! Quite!” intoned the hare.

“Then how will I ever leave?” the girl said with a frown.

“You can’t; you’re stuck in an infinite loop,” offered the gentleman. “You have a condition that will always be true because of the instructions inside the loop. If the condition will never be false, then you’ll just keep doing it over and over again, I’m afraid.”

Poor Alice was about to sulk when the rabbit demanded that they switch seats again. Hoping the next seat would be better, she quickly slipped over and read what the table said there.

int i = 0;

while (i < 10)

{

 myCup.sip();

 i = i + 1;

}

and right beside it:

for (int i = 0 ; i < 10 ; i = i + 1)

{

myCup.sip();

}
“Why are there two . . . Oh wait . . . they’re the same thing. I remember now. A for loop is very similar to a while loop.” Thinking back to her classes, Alice remembered:

for (initialization ; condition ; update)

{

 statement

}

“So . . . I have only have to take 10 sips here,” she said before stopping to pause with a sigh. “That is better than having to not ever stop.” Taking the teacup in hand, she started to count out small sips but quickly just so that rabbit didn’t have time to make her change seats again.

Quickly finishing all of the required sips she sprang off the seat and stood behind it, happy to be free at last.

Rewrite the following for loop as a while loop:

int s = 0;

for (int i = 1; i <= 10 ; i++)

 s = s + i;
int s = 0;

int i = 1;

while (i <=10)

{

 s = s + 1;

 i++;

}

Rewrite the following do loop into a while loop:

int n = 1;

double x = 0;

double s;

do

{

 s = 1.0 / (n*n);

 x = x + s;

 n++;

}

while(s >.01);
int n = 1;

double x = 0;

double s = 1.0; //forces first-time through loop

while(s >.01);

{

 s = 1.0 / (n*n);

 x = x + s;

 n++;

}
Activity 8-2

Outcome: Use for, while, and do loops to solve simple problems.

1. How would you implement a loop that prompts a user to enter a number between 1 and 10, giving three tries to get it right?
import java.util.Scanner;

public class GetNumber

{

 public static void main()

 {

 int userInput = 0;

 int trys = 0;

 Scanner thisInput = new Scanner(System.in);

 do

 {

 System.out.print("Enter a number between 1 and 10: ");

 userInput = thisInput.nextInt();

 trys++;

 }

 while ((userInput < 1 || userInput > 10) && trys < 3);

 if (userInput >= 1 && userInput <= 10)

 {

 System.out.println("Congratulations, you entered " +

 "a valid number and it only took you\n" + trys +

 " try or tries!");

 }

 else

 {

 System.out.println("Sorry, you had three tries to " +

 "enter a valid number.\nPerhaps you need new " +

 "glasses???");

 }

 }

 }
2. Write a program that asks the user to enter today’s exchange rate between U.S. dollars and the euro. Then the program should read U.S. dollar values and convert each to euro values. The program should stop when the user enters a negative value.

import java.util.Scanner;

public class Conversion

{

 public static void main()

 {

 double userInput;

 Scanner thisScanner = new Scanner(System.in);

 System.out.print("Enter exchange rate (dollars to euros): ");

 double exchangeRate = thisScanner.nextDouble();

 do

 {

 System.out.print(

 "Enter dollar amount to convert (-1) to stop: ");

 userInput = thisScanner.nextDouble();

 if (userInput >= 0)

 {

 System.out.printf("Dollars: %.2f", userInput);

 System.out.printf(" Euros: %.2f\n",

 exchangeRate * userInput);

 }

 } while (userInput >= 0);

 }

}
3. Write a loop to display the following:

0

1

2

3

4

5

 for (int i = 0; i < 6; i++)

 {

 System.out.println(i);

 }
4. Write a loop to display the following:

0 1 2 3 4 5

for (int i = 0; i < 6; i++)

{

 System.out.print(i + " ");
}
5. Write a loop to display the following:

1 2 4 8 16 32 64

 for (int i = 0; i < 7; i++)

 {

 System.out.print((int)(Math.pow (2,i)) + " ");

 }

6. Write a loop to display the first 10 iterations of the following sequence:

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 . . .

 String display = "1";

 for (int i = 0; i < 9; i++)

 {

 System.out.print(display);

 display = display + "0";

 }

Activity 8-3

Outcome: Identify and correct common loop errors such as off-by-one errors, infinite loops, and non-executing loops.

1. In the following loops indicate the error if there is one:
int ind = 0;

int sum = 0;

//Sum the numbers (0+1+2+3+4+5+6+7+8+9)

while (ind < 10)

{

 System.out.println(ind);

 sum = sum + ind;

}
Index (ind) is not advanced – stays at 0

int ind = 0;

int sum = 0;

//Sum the numbers (0+1+2+3+4+5+6+7+8+9)

while (ind < 10)

{

 System.out.println(ind++);

 sum = sum + ind;

}

When first summing happens, index (ind) is already advanced to 1

Only sums 1 to 9

int ind = 0;

int sum = 0;

//Sum the numbers (0+1+2+3+4+5+6+7+8+9)

while (ind < 10)

{

 sum = sum + ind;

 System.out.println(ind++);

}

OK
int ind = 0;

int sum = 0;

//Sum the numbers (0+1+2+3+4+5+6+7+8+9)

for (int i = 1 ; i <= 10 ; i++)

{

 sum = sum + ind;

 System.out.println(ind++);

}
In for loop, use the indexing value from the loop

(use “i” not “ind”)

Let the for loop increment the index

int ind = 0;

int sum = 0;

//Sum the numbers (0+1+2+3+4+5+6+7+8+9)

while (ind < 10);

{

 sum = sum + ind;

 ind++;

}
OK

int years = 20;

double rate = 0.05;

while (years > 0)

{

 years++;

 double interest = balance * rate;

 balance = balance + interest;

}

Years is increasing from 20, not decreasing. Loop will never end (years will always be greater then 0)
Likely should be years--

boolean continue;

int years = 20;

double rate = 0.05;

while(continue)

{

 double interest = balance * rate;

 balance = balance + interest;

 years--;

 if (years > 0)

 {

 continue = false;

 }
}

No initial value set to continue. Set it “true” initially so the loop will run until it’s et to “false”
Activity 8-4

Outcome: Predict the output of code snippets that contain loops.

1. How many times does the following loop execute?
for (i= 0 ; i <= 10 ; i++)

{

 System.out.println(i * i);

}

11 times (once each for i = 0,1,2,3,4,5,6,7,8,9,10)

2. How many times does the following loop execute?
int i = 1;

int j = 10;

int previous_i = 0;

while (i < j)

{

 System.out.println(i + j);

 int temp = i;

 i = i + previous_i;

 previous_i = temp;

 j--;

}

Start: i = 1, j = 10, previous_i = 0
After 1: i = 1, j = 9, previous_i = 1
After 2: i = 2, j = 8; previous_i = 1
After 3: i = 3, j = 7; previous_i = 2

After 4: I = 5, j = 6; previous_i = 3

After 5: I=8, j = 5 loop fails

5 times
3. What does the following code segment do?
System.out.println("Countdown to liftoff...");
 while (count > 0)

 {
 System.out.println(count + "!");
 count = count - 1;
 } System.out.println("Liftoff! We have liftoff!");
Fails to compile unless count is assigned a value.

If count was set to 3, it would print:

Countdown to liftoff...

3!

2!

1!

Liftoff! We have liftoff!

PAGE
7
Week 8 Learning Activities

