COMP 111 - Week 9 Learning Activities
Activity 9-1

Outcome: Implement algorithms requiring nested loops.

1. Write a piece of code that will display a hollow square of size n on each side. You can assume you are given an integer n. For example:
n =2

**

**
n = 3

* *

n = 4

* *

* *

import java.util.Scanner;

public class LearningAct9_1

{

 public static void main()

 {

 LearningAct9_1 thisObject = new LearningAct9_1();

 thisObject.run1();

 }

 public void run1()

 {

 Scanner in = new Scanner(System.in);

 System.out.print("Enter size: ");

 int input = in.nextInt();

 if (input < 2)

 {

 input = 2;

 }

 // print top

 for (int i = 0; i < input; i++)

 {

 System.out.print("*");

 }

 System.out.println();

 // print middle

 for (int i = 0; i < input-2; i++)

 {

 System.out.print("*");

 for (int j = 0; j < input-2; j++)

 {

 System.out.print(" ");

 }

 System.out.println("*");

 }

 // print bottom

 for (int i = 0; i < input; i++)

 {

 System.out.print("*");

 }

 System.out.println();

 }

}

2. Write a piece of code that will create a multiplication table from 1 to 10 on each axis.
import java.util.Scanner;

public class LearningAct9_2

{

 public static void main()

 {

 LearningAct9_2 thisObject = new LearningAct9_2();

 thisObject.run1();

 }

 public void run1()

 {

 // top line

 System.out.print(" ");

 for (int i = 0; i < 10; i++)

 {

 System.out.printf("%3d ", i + 1);

 }

 System.out.println();

 //each line

 for (int i = 0; i < 10; i++)

 {

 System.out.printf("%3d ", i + 1);

 // values on line

 for (int j = 0; j < 10; j++)

 {

 System.out.printf("%3d ", (i + 1) * (j + 1));

 }

 System.out.println();

 }

 }

}

 1 2 3 4 5 6 7 8 9 10

 1 1 2 3 4 5 6 7 8 9 10

 2 2 4 6 8 10 12 14 16 18 20

 3 3 6 9 12 15 18 21 24 27 30

 4 4 8 12 16 20 24 28 32 36 40

 5 5 10 15 20 25 30 35 40 45 50

 6 6 12 18 24 30 36 42 48 54 60

 7 7 14 21 28 35 42 49 56 63 70

 8 8 16 24 32 40 48 56 64 72 80

 9 9 18 27 36 45 54 63 72 81 90

 10 10 20 30 40 50 60 70 80 90 100

3. Write a piece of code that will display the following triangles in a way similar to problem 1, in which you are given the size n. For example:

n = 3

 * * *

 ** ** * *

 *** *** *****

n = 4

 * * *

 ** ** * *

 * * * * * *

 **** **** *******

import java.util.Scanner;

public class LearningAct9_1_3

{

 public static void main()

 {

 LearningAct9_1_3 thisObject = new LearningAct9_1_3();

 thisObject.run1();

 }

 public void run1()

 {

 Scanner in = new Scanner(System.in);

 System.out.print("Enter size: ");

 int input = in.nextInt();

 if (input < 3)

 {

 input = 3;

 }

 // line 1

 for (int i = 0; i < input - 1 ; i++)

 {

 System.out.print(" ");

 }

 System.out.println("*");

 // line 2

 for (int i = 0; i < input - 2; i++)

 {

 System.out.print(" ");

 }

 System.out.println("**");

 // middle lines

 for (int i = 2; i < input - 1; i++)

 {

 // leading spaces

 for (int j = 0; j< (input - (1 + i)) ; j++)

 {

 System.out.print(" ");

 }

 System.out.print("*");

 //middle spaces

 for (int j = 0; j < i-1; j++)

 {

 System.out.print(" ");

 }

 System.out.println("*");

 }

 // Last line

 for (int i = 0; i < input ; i++)

 {

 System.out.print("*");

 }

 System.out.println();

 }

}

Enter size: 10
 *

 **

 * *

 * *

 * *

 * *

 * *

 * *

 * *

Activity 9-2

Outcome: Differentiate between various loop termination conditions such as sentinels, symmetric and asymmetric bounds, and counting.

1. Identify which of the following have symmetric or asymmetric bounds, as well as those that use a sentinel value or are counting based.
a. for (i = 1; i <= 10; i++)

symmetric, counting based

b. for (i = 1; !done; i++)

not counting based

c. for (i = 0; i < 10; i++)

asymmetric, counting based

d. for (i = 10; i > 0; i--)

asymmetric, counting based

e. while (!done)

not counting based

f. for (i = -10; i <= 10; i++)

asymmetric, counting based

g. for (i = 10; i >= 0; i++)

symmetric, counting based

h. for (i = -10; i <= 10; i=i+3)

symmetric, counting based

2. Count the number of iterations in each of the parts in problem 1 above. If you cannot give an exact number, explain why.

a. 10
b. Cannot give a number – not counting based

c. 10
d. 10
e. Cannot give a number – not counting based

f. 21
g. 11
h. 7
Activity 9-3

Outcome: Use the basic methods of the Random class to generate random numbers.

1. Write a program that displays a random number math addition question, asks the user for the answer, and tells the user whether he or she is correct.
import java.util.Scanner;

import java.util.Random;

public class LearningAct9_3_1
{

 public static void main()

 {

 LearningAct9_3_1 thisObject = new LearningAct9_3_1();

 thisObject.run1();

 }

 public void run1()

 {

 Scanner in = new Scanner(System.in);

 Random generator = new Random();

 boolean more = true;

 int valueA;

 int valueB;

 int response;

 do

 {

 // generate two values

 valueA = generator.nextInt(100);

 valueB = generator.nextInt(100);

 // Display problem

 System.out.print (valueA + " + " + valueB + " = ");

 response = in.nextInt();

 // Check response

 if (response == valueA + valueB)

 {

 System.out.println("Correct! ");

 }

 else

 {

 System.out.println("Sorry, the correct answer is " +
 (valueA + valueB));

 }

 System.out.print("More? (Y or N): ");

 if (in.next().equalsIgnoreCase("Y"))

 {

 more = true;

 }

 else

 {

 more = false;

 }

 }

 while (more == true);

 }

}
2. Write a program that plays a rock-paper-scissors game. Two computer players will each randomly make their choices and the program will need to report the results.
import java.util.Scanner;

import java.util.Random;

public class LearningAct9_3_2

{

 public static void main()

 {

 LearningAct9_3_2 thisObject = new LearningAct9_3_2();

 thisObject.run1();

 }

 public void run1()

 {

 Scanner in = new Scanner(System.in);

 Random generator = new Random();

 boolean more = true;

 int valueA;

 int valueB;

 String stringA;

 String stringB;

 int response;

 String result;

 do

 {

 // generate two values

 valueA = 1 + generator.nextInt(3);

 valueB = 1 + generator.nextInt(3);

 stringA = countToString(valueA);

 stringB = countToString(valueB);

 // Display generated values

 System.out.println ("Player 1: " + stringA);

 System.out.println ("Player 2: " + stringB);

 // Check response

 if (stringA.equals("rock")) // player 1 is rock

 {

 if (stringB.equals("rock"))

 {

 System.out.println ("Tie");

 }

 else if (stringB.equals("paper"))

 {

 System.out.println ("Paper wraps rock");

 }

 else // StringB equals sissors
 {

 System.out.println ("Rock breaks sissors");

 }

 }

 else if (stringA.equals("paper")) // player 1 is paper

 {

 if (stringB.equals("rock"))

 {

 System.out.println ("Paper wraps rock");

 }

 else if (stringB.equals("paper"))

 {

 System.out.println ("Tie");

 }

 else // StringB equals sissors
 {

 System.out.println ("Sissors cuts paper");

 }

 }

 else // player 1 is sissors
 {

 if (stringB.equals("rock"))

 {

 System.out.println ("Rock breaks sissors");

 }

 else if (stringB.equals("paper"))

 {

 System.out.println ("Sissors cuts paper");

 }

 else // StringB equals sissors
 {

 System.out.println ("Tie");

 }

 }

 System.out.print("More? (Y or N): ");

 if (in.next().equalsIgnoreCase("Y"))

 {

 more = true;

 }

 else

 {

 more = false;

 }

 }

 while (more == true);

 }

 private String countToString(int count)

 {

 if (count == 1)

 {

 return "rock";

 }

 else if (count == 2)

 {

 return "paper";

 }

 else

 {

 return "sissors";

 }

 }

}

Challenge
Rewrite your rock-paper-scissors game to have one human player and one computer player. Some example output is shown below.

(1) Rock

(2) Paper

(3) Scissors

Choose a move (1-3): 1

You chose: Rock

The computer chose: Paper

Paper beats rock. You lose.
import java.util.Scanner;

import java.util.Random;

public class LearningAct9_3_2B

{

 public static void main()

 {

 LearningAct9_3_2B thisObject = new LearningAct9_3_2B();

 thisObject.run1();

 }

 public void run1()

 {

 Scanner in = new Scanner(System.in);

 Random generator = new Random();

 boolean more = true;

 int valueA;

 int valueB;

 String stringA;

 String stringB;

 int winLoseTie;

 do

 {

 // get value from human

 System.out.println("(1) Rock");

 System.out.println("(2) Paper");

 System.out.println("(3) Scissors");

 System.out.print("Choose a move (1-3): ");

 valueA = in.nextInt();

 stringA = countToString(valueA);

 System.out.println("You chose: " + stringA);

 // generate computer value

 valueB = 1 + generator.nextInt(3);

 stringB = countToString(valueB);

 System.out.println("The computer chose: " + stringB);

 // Check response

 if (stringA.equals("rock")) // player 1 is rock

 {

 if (stringB.equals("rock"))

 {

 System.out.println ("Tie");

 winLoseTie = 0;

 }

 else if (stringB.equals("paper"))

 {

 System.out.println ("Paper wraps rock");

 winLoseTie = -1;

 }

 else // StringB equals sissors
 {

 System.out.println ("Rock breaks sissors");

 winLoseTie = 1;

 }

 }

 else if (stringA.equals("paper")) // player 1 is paper

 {

 if (stringB.equals("rock"))

 {

 System.out.println ("Paper wraps rock");

 winLoseTie = 1;

 }

 else if (stringB.equals("paper"))

 {

 System.out.println ("Tie");

 winLoseTie = 0;

 }

 else // StringB equals sissors
 {

 System.out.println ("Sissors cuts paper");

 winLoseTie = -1;

 }

 }

 else // player 1 is sissors
 {

 if (stringB.equals("rock"))

 {

 System.out.println ("Rock breaks sissors");

 winLoseTie = -1;

 }

 else if (stringB.equals("paper"))

 {

 System.out.println ("Sissors cuts paper");

 winLoseTie = 1;

 }

 else // StringB equals sissors
 {

 System.out.println ("Tie");

 winLoseTie = 0;

 }

 }

 // win or lose

 if (winLoseTie == 1)

 {

 System.out.println ("You win");

 }

 else if (winLoseTie == -1)

 {

 System.out.println ("You lose");

 }

 System.out.print("More? (Y or N): ");

 if (in.next().equalsIgnoreCase("Y"))

 {

 more = true;

 }

 else

 {

 more = false;

 }

 }

 while (more == true);

 }

 private String countToString(int count)

 {

 if (count == 1)

 {

 return "rock";

 }

 else if (count == 2)

 {

 return "paper";

 }

 else

 {

 return "sissors";

 }

 }

}

Activity 9-4:

Outcome: Describe the properties and uses of arrays and ArrayList data structures.

The rocky plains continued for what seemed like miles and miles. Alice had never seen so many stones and pebbles in her whole life as she had in just this one place. They were quite troublesome as they made travel very slow. However, the bus route continued onward with the girl stumbling along. She wondered how any vehicle could manage to travel over these rocks.

Much to her delight, Alice eventually made her way into a large garden. Here, in deep rich soil, there were many long rows set aside in a variety of sizes. The very first row contained roses. At one end was a little sign that read:

Rose queensRoses[]

The row itself had a single rose in a square, then another single rose, then another all the way down. After counting, she found there were exactly 22 roses all together in the row. Other rows had different types and numbers of flowers, but each row had only a single type.

Asleep under a nearby tree was a very exhausted looking caretaker. Beside him, slightly smudged with dirt, was a piece of paper. Always being curious, Alice picked up the paper and began to read:

//Declaration of queen's garden arrays

Rose queensRoses[] = new Rose[22];

Tulip queensTulips[] = new Tulip[15];

Lavender queensLavender[] = new Lavender[18];

The list went on, describing everything Alice could see around her. Thinking to herself, "These writings look just like variable declarations except they have these funny []s."

Going back to the roses, Alice looked closer, finding a smaller tag near the first rose:

queensRoses[0]

As she looked at the next one beside it, she read:

queensRoses[1]

This, in fact, continued all the way down to the last tag, which said:

queensRoses[21]

The concept seemed very handy because it allowed the roses to be grouped together without having to declare separate variables like rose1, rose2, rose3, etc. Wanting to give this concept a try, Alice went to an unused part of the garden and practiced.

"Rose alicesRoses[] = new Rose[3];" she said out loud, expecting a row of three roses to appear. Instead she got the row and all the signs but no roses. "Perhaps I need to declare the roses by themselves since they are Objects, and their default value is null," she contemplated.

"alicesRoses[0] = new Rose();" spoke the girl, and sure enough a rose appeared in the first block of the row.

"alicesRoses[1] = new Rose(); alicesRoses[2] = new Rose();" completed the rest of her rose collection.

The big question to her mind now was how she could get more roses into the grouping. Would the grouping increase in size automatically?

"alicesRoses[3] = new Rose();" spoke Alice. Just as she finished her command, a small imp appeared out of nowhere with a large sign held in a very tiny hand:

* *

* ArrayIndexOutOfBoundsException *

* *

The little devil promptly thwacked Alice on the head and then vanished in a puff of smoke. "Ow! I guess I wasn't allowed to do that. These arrays must be fixed in size once you make them," she concluded.

Moving to a different part of the garden, she saw another caretaker busy at work. Unlike what she was doing, the caretaker was somehow able to make the rows grow in size as he added flowers. As Alice moved closer, he happened to start a new row.

"ArrayList<Buttercup> queensButtercups =
 new ArrayList<Buttercup>();

Buttercup b = new Buttercup();

queensButtercups.add(b);"

When the caretaker declared the ArrayList, Alice noticed a sign appear on the ground stating:

"queensButtercups, " but no row was made. However, as soon as he added the buttercup it was planted into the first spot, which was now visible. After that he kept repeating:

"b = new Buttercup();

queensButtercups.add(b);"

This of course created more and more buttercups, placing them one after another. It seems that this was a way to have a group of things to which you could keep adding more and more. In fact, as she later learned, with an ArrayList you can add and remove from any spot in the group as well as perform various other useful functions.
Describe the general features of arrays and ArrayLists.

Arrays and ArrayLists provide collections of the same type of objects. Both provide a structure to operate on the collections with loops.
Describe a situation where arrays might seem to have an advantage over ArrayLists. Explain.

Arrays are slightly simpler than ArrayLists and can operate on simple data types directly.
Describe a situation where ArrayLists might seem to have an advantage over arrays. Explain.

ArrayLists are not of fixed size and expand as items are added. Elements can be deleted from an ArrayList.
Create an array of integers to hold the odd numbers from one through 10. Use a loop to assign values to each of the places of the array. Do the same using an ArrayList.

import java.util.ArrayList;

import java.lang.Integer;

public class LearningAct9_4

{

 public static void main()

 {

 LearningAct9_4 thisObject = new LearningAct9_4();

 thisObject.run1();

 }

 public void run1()

 {

 int [] array = new int[5];

 ArrayList<Integer> list = new ArrayList<Integer>();

 int value = 1;

 for (int i = 0; i < 5; i++)

 {

 array[i] = value;

 list.add(value);

 value += 2;

 }

 for (int i = 0; i < 5; i++)

 {

 System.out.print(array[i] + " " + list.get(i) + " ");

 }

 System.out.println();

 }

}
Activity 9-5:

Outcome: Use a debugger to examine a running program.

Open the project named “Debugging” under the COMP111/Activities/Week14 directory. Your screen should look something like the following figure:

[image: image1.png]Vew Help

Edt ook
Run Tests.

New Class.
@ recording

E3BlueJ: Debugging

Project

Earlier in the course, we looked at simulated taxi cabs. The TaxiSimulator class makes use of the same classes to simulate the everyday running of a taxi service. If you start the main method provided inside the simulator, the user will be prompted with a menu:

1. Display City Map

2. Request a Taxi

3. Advanced time by a minute

4. Quit

Selection:
Here you have the option to display the current city map, request a taxi, and advance time by a minute at a time. If you choose option 1, you can see a representation of the city.

G...................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................
If you now choose option 2, you are prompted for the location where we are to be picked up. Choose (2, 3) for now. Immediately after that, you are asked for a location to be dropped off. Choose (5, 7).

What is the pickup location (x then y):2 3

What is the drop off location (x then y):5 7
Take a look at the city map now to see what is different:

T...................

....................

...P................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

A taxi can move a single block per minute and take exactly one minute to pick up or drop off a passenger. Once the taxi drops off a customer, it will wait at that location until it receives new orders. When someone requests a taxi from the dispatcher, it will look to find any taxi that is already available. If none is available, it will try and get a new one from the garage.

Advance the time by a single minute to see what happens:

G...................

T...................

...P................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................
G...................

....................

...P................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................
G...................

....................

...T................

....................

....................

.......D............

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................
Feel free to play with the simulation briefly to get a feel for it. The problem here is that there are bugs in the system. Writing tests helps you to find bugs in the software. Implement tests for different scenarios to see if you can find the bug. Once you do find a problem via a test case, you are then ready to try to discover what is causing the problem.

In more complex systems, looking at the code may not be enough to determine where the source of the difficulty is. It becomes useful to have tools that let you watch how the software behaves while it is running. You typically do this with the use of a debugger.

If you still have the program running, choose option 4 and quit. Once you have done this, open up the simulator and examine the run method. Click on the line that states:

System.out.print("Selection:");

Now choose “Set/Clear Breakpoint” under the Tools menu. On the left side of the window by the line numbers, you should now see a small red stop sign.

[image: image2.png]TaxiSimulator,
Class Edt Took Options

Gomate) Ui | () (copy) (Paste] Fina) Fird e [Sise] mprementton

i &)

td. advanceTine (1] ;

)

public void run()
[
while(true)
¢
displaylenu(] ;

int choice = sc.nextInt(];
if (choice<l || choice> 4]
¢
Systen.out.println("That is not a valid choice, pleasi
continue;

3

This symbol indicates that you have set a breakpoint on that line number. While you are using the debugger, if the program is running and gets to that line, it will stop and wait for instructions. Try that now.

Go ahead and close the window for the output and the source for that class. Try running the program again; you should have several windows pop open on the display. One should be the console output which should have only the following showing:

1. Display City Map

2. Request a Taxi

3. Advanced time by a minute

4. Quit
Notice that it has not displayed the statement asking for your choice just yet. The source code window also should reopen and should look like the following:

[image: image3.png]TaxiSimulator,
Class Edt Took Options

Gomate) Ui | () (copy) (Paste] Fina) Fird e [Sise] mprementton

i &)

td. advanceTine (1] ;

)

public void run()
[
while(true)
¢
displaylenu(] ;

int choice = sc.nextInt(];
if (choice<l || choice> 4]
¢
Systen.out.println("That is not a valid choice, pleasi
continue;

3

Fread mai stopped at breakpaint.

The arrow indicates you are on this line and waiting for further commands. In addition to these two windows, a third window should also be displayed:

[image: image4.png]E3BlueJ: Debugger
Options

Freads

« St

Taxisimulatar.main

eatc variables

rstance variabies
[scanner sc = <object reference’>

TaxiDispatch td = <abect reference>
lchar[J] citytap = <obect reference:>

ocalvariables

NMEIEG

Stepinto || Continve || Terminate

This last window contains the controls for debugging. On the left side, you see which method you are currently in. At the top, it indicates you are currently in the run method of the TaxiSimulator class. On the right side, it lists all the variables that are currently in scope that you are aware of. At the bottom are controls allowing you to decide what to do next.

“Step” means execute the given command and go to the next command. If the current command is a method call, it will execute the entire method and then wait at the next command.

“Step Into” is used when the current command is a method call, and you want to “step into” it rather than having it just executed.

“Continue” is used when you want the program to run freely again. The program will then continue as normal until it reaches another breakpoint.

“Terminate” is used when you want to stop debugging the program entirely.

Choose “Step” for now.

Notice the difference in the output window:

1. Display City Map

2. Request a Taxi

3. Advanced time by a minute

4. Quit

Selection:

It now added the Selection: as the command directed.

Select “Step” again.

Now the debugger window looks like the following:

[image: image5.png]E3BlueJ: Debugger
Options

Freads

«

Threadis running
Threads must be stopped o view detals.

@ 3 B B X

Halt step Siepito | Contiue | Teminate

Notice that you do not have the options of “Step,” “Step Into,” and “Continue.” This is because of the command you just executed. Notice that it is trying to read input from the user, so the program cannot continue until it gets that input. Open up the output window and make a choice, like option 1. Once you do that you will have the options again.

[image: image6.png]E3BlueJ: Debugger
Options

Freads

Taxisimulatar.main

eatc variables

rstance variabies
[scanner sc = <object reference’>

TaxiDispatch td = <abect reference>
lchar[J] citytap = <obect reference:>

ocalvariables
it choice = 1

NMEIEG

stepinto || Continve || Terminate

Notice that you now have a local variable called choice with the value 1 (assuming you entered 1 at the prompt). Trying using “Step” again and watch how execution goes past the first if statement since the condition is false. You can visually see that the value of the variable is 1, and that is why execution went this way.

You should be on the next if statement now. Select step again. This time the condition should be true!

Now you are at the line where you make a method call to display the city map. This time choose “Step Into” and see what happens.

The source code display should change to within the displayMap method where you can continue executing the code line by line.

Using a debugger is very powerful in that it allows you to see what is really going on inside your program. However, using a debugger can be very time consuming, executing one line at a time and paying attention to what all the values are for all the variables. Your best approach is to use test cases to give you an idea where a problem might be; then set appropriate breakpoints in the code so that the debugger will stop in the right area.

See if you can find the problem(s) in the taxi simulator!

Each period represents a city block. The letter G in the top left corner is the location of the taxi garage. Based on a graphical layout, the garage is located at (0, 0).

You can see a T in the top left corner, indicating a taxi that is now in service. Since it is at the same location as the garage, you only see the letter T. You also see the letter P at location (2, 3), indicating a passenger waiting to be picked up.

As you can see, the taxi has moved a single block on its way to pick up the passenger. By advancing time 4 more minutes, the taxi should arrive at the location of the passenger.

Here, the taxi has arrived at the passenger’s location. Remember, it takes an additional minute to pick up the passenger!

Try advancing the clock one more time.

Now, the passenger has been picked up, and the taxi is ready to get underway to the chosen destination. The destination is marked on the map with the letter D.

PAGE
12
Week 9 Learning Activities

