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Abstract-File sharing is a very popular service provided by 
peer-to-peer (P2P) networks. In a P2P file-sharing network, 
users share files and issue queries to the network to find the 
locations of the files residing at other peer nodes. Due to 
factors such as large user base and use of query broadcast 
protocols, each node in the network receives many search 
queries every second. Recently network developers have 
incorporated proxy-enabled peers, or supernodes, which are 
designed to enhance scalability by providing indexing services 
to nodes on slower network connections. Typically, supernodes 
build a vector or multi-index of all the filenames of the shared 
files stored on other (slower) peers nodes connected to them. In 
this paper we consider a new model whereby the index tables 
of the individual nodes are merged into a single data structure 
stored by the supernode. We analyze this new model in relation 
to the standard vectorized data structure.   We compare the 
performance of these supernode indexing algorithms and 
provide a theoretical analysis that is asymptotic and 
probabilistic in nature. However, there are several significant 
constant factors that the theory does not account for, and 
which in practice are important for designing an optimal 
system solution. We report herein on a series of simulation 
experiments which provide 1) verification of the asymptotic 
analysis of the formal framework, and 2) tools to determine the 
magnitude of the constant factors involved in the performance 
analysis. Our general conclusion is that when the query rate 
exceeds the rate of data updates, the new merged model is 
preferable to the vector model. However, the details of our 
analysis allow us to consider combinations of several 
parameters, and thereby enable the design of optimal indexing 
schemes via the incorporation of measurements of the 
parameters of particular applications.  

Keywords --- peer-to-peer computing; text indexing; file 
sharing; algorithm analysis. 

I. 1. INTRODUCTION 
Peer-to-peer (P2P) networks make new services available 

to end-users by enabling their PCs to become active 
participants in computing processes. File sharing has been 
the most popular service for which P2P networks have been 
used in recent years. In a P2P file-sharing network, users 
share files and issue queries to the network to find out the 

locations of the files residing at other peer nodes.  

Research is ongoing with a focus on the scalability issues 
in P2P networks [1,13,15]. The dimensions of scalability for 
P2P file sharing applications are numerous, including 
number of nodes hosted, the rate of connection and loss, the 
size and composition of shared file indexes, and the rate and 
scope of valid search queries. In the most popular P2P 
protocols, such as Gnutella [3, 20], nodes are responsible for 
responding to the queries that they receive, as well as 
forwarding the queries in a broadcast. The size of many P2P 
file sharing networks is quite large, with common reports 
exceeding several hundred thousand simultaneous users. Due 
to factors such as large user base and use of query broadcast 
protocols, each node in the network receives and must 
respond to many search queries every second. Recently, P2P 
network developers have incorporated proxy-enabled peers, 
or supernodes, which are design to enhance scalability by 
providing indexing services to nodes on slower network 
connections. In practice,  supernodes are designed to index 
all the filenames of the shared files stored on other (slower) 
peers nodes connected to them [20].   

 

 

Figure 1.   A P2P network using supernodes as proxies for dial-up users. 

In Figure 1, we show a P2P network containing both 
normal host nodes and supernodes. Typically, end-users on 
slower connections, particularly dial-up modems, will opt to 
connect to public access supernodes, since they are assumed 
to operate on higher-speed connections. The supernode 
indexes the filenames of the files residing at connected hosts. 
The supernode subsequently responds to queries arriving 
from the network, and does not forward the queries to any of 
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the connected hosts. Thus the supernode shields the hosts 
under it from bandwidth consuming query traffic. It has been 
reported that the scalability and overall performance of the 
network significantly improves with the introduction of 
supernodes [20]. However, the scalability of the supernodes 
themselves remains an issue; since for example, the question 
remains how large a load can each supernode handle 
effectively. Let us consider this question in detail. 

Note that file storage and file transfer are not an issue for 
supernodes. Although supernodes act as proxies for indexing 
purposes, they are not involved in any file transfers that may 
occur as a result of query hits, since these transfers occur via 
direct connections between hosts. The primary factors 
affecting the supernode performance, include the time taken 
to process all the queries, and the time for updating the index 
after connection and disconnection. In the supernode, the 
time it takes to insert filenames into the main index and the 
time it takes to delete filenames from the main index can be 
significant.   

The indexing problem for the supernode is to maintain a 
dynamic index of all the filenames of all the hosts that are 
connected to the supernode. These dynamic multi-indexes 
are typically stored as a vector of index tables, which are 
searched sequentially with each query. In this paper we 
consider a new model for supernode indexing, whereby the 
index tables are merged into a single data structure. In this 
paper we analyze this new model in relation to the standard 
vectorized data structure.   We compare the performance of 
supernode indexing algorithms and provide a theoretical 
analysis that is asymptotic and probabilistic in nature. There 
are, however, several constant factors that the theory does 
not account for, and which in practice are important for 
designing an optimal system solution. We report herein on a 
series of simulation experiments which provide  1) 
verification of the asymptotic analysis of the formal 
framework, and 2) tools to determine the magnitude of the 
constant factors involved in the performance analysis. For 
our theoretical and experimental analysis we assume Poisson 
distributions on the arrival rate of nodes, and an exponential 
distribution on the duration time that a node stays connected, 
as is done in [17]. These distributions are useful for modeling 
and analyzing a highly dynamic, yet relatively stable system. 
Our general conclusion is that when the query rate exceeds 
the rate of data updates, the new merged model is preferable 
to the vector model. In this paper, we give a detailed analysis 
that accounts for a number of variable performance factors 
such as number and rate of connections, size and rate of 
change of filenames, and query rate and query string sizes. 
The details of our analysis allow us to consider combinations 
of parameters, and thereby enable the design of optimal 
indexing schemes via the incorporation of measurements of 
the parameters of particular applications.   

II.  TEXT INDEXING TECHNIQUES 
Pattern matching is a classical algorithmic problem 

[9,10,16]. There are several significant dynamic text 
indexing methods discussed in the literature which enable 
general pattern matching, including String B-Trees and 
Suffix Trees [7, 12, 17], Dynamic Suffix Arrays [2, 11], and 

other more recent methods [4, 5, 6, 8]. With respect to the 
application of interest in this paper, that of pattern matching 
using an index of dynamic lists of filenames, the generalized 
suffix tree is a sufficiently optimal method. For all the 
performance measures of interest, i.e., for search, insertion 
and deletion, the time complexities, obtained by using 
generalized suffix trees, are independent of the size of the 
index. The search time is linear in terms of the length of the 
pattern and the number of occurrences which is best possible. 
The insertion and deletion times are both linearly 
proportional to the length of the filename to be 
inserted/deleted, which is again the best possible. 

Suffix trees can be used to solve the exact pattern 
matching problem in linear time. The classic application for 
suffix trees is the substring problem. One is first given a text 
S of length m, and a string-pattern  p of length n we mush 
either find an occurrence of p in S or determine that p is not 
contained in S.  With the use of a suffix tree, the text is 
preprocessed in O(m) time; thereafter, whenever a string of 
length n is input the algorithm searches for it in O(n) time 
using that suffix tree. The O(m) preprocessing and O(n) 
search result for the substring problem is extremely effective 
for the P2P filename indexing problem, where many short 
sequences of requested strings will be input as queries after 
the suffix tree is built.  

Algorithms for constructing suffix trees are described in 
Weiner [18] and McCreight [12]. More recently, Ukkonen 
[17] developed a conceptually simpler linear-time algorithm 
for building suffix trees. A suffix tree for an m-character 
text-string S is a rooted directed tree with exactly m leaves 
numbered 1 to m. Each internal node, other than the root, has 
at least two children and each edge is labeled with a 
nonempty substring of S. No two edges out of a node can 
have edge-labels beginning with the same character. The key 
feature of the suffix tree is that for any leaf i, the 
concatenation of the edge-labels on the path from the root to 
leaf i exactly spells out the suffix of S that starts at position i. 
That is, it spells out S[i..m]. For example, the suffix tree for 
the string xabxac is shown in Figure 2. The path from the 
root to the leaf numbered 1 spells out the full string S = 
xabxac, while the path to the leaf numbered 5 spells out the 
suffix ac, which starts in position 5 of S. As stated above, the 
definition of a suffix tree for S does not guarantee that a 
suffix tree for any string actually exists. The problem is that 
if one suffix of S matches a prefix of another suffix of S then 
no suffix tree obeying the above definition is possible, since 
the path for the first suffix would not end at a leaf. For 
example, if the last character of xabxac is removed, creating 
string xabxa, then suffix xa is a prefix of suffix xabxa, so the 
path spelling out xa would not end at a leaf. 

To avoid this problem, we assume (as was true in Figure 
2) that the last character of S appears nowhere else in S. 
Then, no suffix of the resulting string can be a prefix of any 
other suffix. To achieve this in practice, we can add a 
character to the end of S that is not in the alphabet that string 
S is taken from. Usually the character ‘$’ is used as the 
“termination” character.  



      

 

  

Figure 2.   Suffix tree for the string “xabxac” 

For our purpose of storing filenames, we use a special 
kind of suffix tree called the generalized suffix tree. The 
generalized suffix tree GST(P) for a set of strings P is the 
tree obtained by superimposing incrementally the suffix trees 
ST(p) for all the strings p in P. Two arcs are superimposed 
whenever their labels have a common prefix (equal suffixes 
can be associated with the same leaf). 

While performing searches for query patterns, we must 
find out all the filenames that have the pattern as a substring. 
Due to this requirement, at each node in the generalized 
suffix tree, we store the file identifiers of all the filenames 
that have the string represented by that node as a substring. 

III. SUPERNODE DYNAMIC INDEXING SCHEMES  
The frequency of connections and disconnections in a 

supernode can be very high. Since for every connection and 
disconnection, we must perform insertions into and deletions 
from the main index, the method used to maintain the main 
index plays a major role in determining the efficiency of the 
supernode’s performance. When a node connects to the 
supernode, it must transfer to the supernode, the GST of all 
its filenames. The standard method for a supernode to add or 
delete a filenames index is to store a vector of pointers to the 
roots of the individual indexes. We identify this standard 
model as the vector model VM. 

In the VM the supernode maintains a vector of GSTs, 
containing the GSTs of all the nodes that are connected to it. 
When a node connects to the supernode, its GST is 
transferred to the supernode and a pointer to it must be added 
to the vector. When the node disconnects, its tree pointer 
must be removed from the vector. 

In this paper we consider a new model, whereby the 
index tables stored in the supernode are merged into a single 
data structure.  We identify this model as the merged tree 
model MTM. 

In the MTM the supernode maintains a single, primary 
GST. When a node connects to the supernode, the new 
node’s GST is inserted into the primary GST of the 
supernode. When a node disconnects, the set of filenames 
associated with that node must be removed from the primary 
GST.  

There are a number of tradeoffs when considering these 
two models.  In the merged tree model, significantly more 
pre-processing of the data structure needs to be done when 
nodes connect and disconnect. In the vector model, little or 
no pre-processing is required. On the other hand, while 
performing searches, in the merged tree model only a single 

tree needs to be searched, whereas in the vector model, a 
collection of trees, one per connected node, must be 
searched. We now consider the problem of comparing the 
overall performances of the two schemes. 

IV. THEORETICAL ANALYSIS OF SUPERNODE 
INDEXING  

In this section, we present a formal analysis of the 
performance characteristics of the two models. A large 
number of parameters are involved in the performance 
analysis, including the data set size and composition, the 
number of nodes and their rate of addition and deletion from 
the supernode, the rate and composition of queries. As noted 
earlier, for our analysis we assume Poisson distributions on 
the arrival rate of nodes, and an exponential distribution on 
the duration time that a node stays connected. These 
distributions are useful for modeling and analyzing a 
relatively stable system, for example it can be shown that the 
evolving system rapidly converges to a stable average 
number N of nodes connected to the supernode [17]. We 
focus our attention on the five parameters most relevant to 
performance. We assume Poisson (or exponential) 
distributions on all these random variables, and use the 
following notation to denote the parameterized mean values: 

* N is the average number of connections to the 
supernode. 

* F is the average number of files per node. 

* L is the average length of a filename. 

* S is the average length of a query string. 

* Q is the average number of queries per unit time. 

In order to compare the performances of the two 
schemes, we make use of a value called the response time. 
Formally, the response time is defined as the time taken by 
each scheme to perform the following two phase operations, 
which taken together is the sum of the processing time and 
the search time. 

       RESPONSE_TIME = Phase 1  +  Phase 2, where  

Phase 1: Time required to update the data structure to 
account for the connection of new client nodes and the 
disconnection of other previous client node. 

Phase 2: Time required to perform and return results 
from a set of queries on the updated data structure. 

To compute and express formally a value for 
RESPONSE_TIME we will normalize time units to be equal 
to the expected arrival rate ( 1=λ ) of new connections. 
Therefore we have that, with high probability, in Phase 1 the 
data structure is modified to account for O (1) node updates 
changes. Also, we have that, with high probability, in Phase 
2 the number of queries on the updated index is O(Q).  We 
have the following theorem that allows us to compare 
asymptotically the performance of the two models. 

 



Theorem 1.  For any time t )(NΩ= , with high 
probability p > 1 - 1/N, the response times can be bounded 
above and below as follows: a) in the vector model, 
RESPONSE_TIME (VM) = Θ(1) + Θ(QNS), and b) in the 
merged tree model,  RESPONSE_TIME (MTM) = Θ(FL) + 
Θ(QS). 

Proof.  

The number of nodes connected to the supernode has a 
Poisson distribution. Using standard techniques for bounding 
the tail of the distribution [19] it can be shown that with 
probability p > 1 – 1/N, the number of nodes connected to 
the supernode at any time t )(NΩ=  is )(NΘ , and 
furthermore, the number of nodes added and deleted during a 
unit of time is O (1). Finally, with high probability, we have 
that the number of queries within a time unit is )(QΘ , and 
furthermore, the size of each query string is )(SΘ .  

In the vector model, the addition and the removal times 
of each node are both constants because pointers to the GSTs 
simply need to be added to or removed from the vector, and 
each such operation is constant time. Thus the Phase 1 
preprocessing time for VM is )1(Θ . The search time for 
each query is linear in terms of the product of the size of 
each query and the number of GSTs to be searched. Thus the 
Phase 2 search time for VM would be )(QNSΘ .  

In the merged tree model, the Phase 1 processing time, 
depends linearly on the size of the data sets involved, and 
thus would require Θ(FL) time. The Phase 2 search time for 
MTM would be proportional to the product of the length of 
each query and the number of queries, and thus equal to 
Θ(QS). The theorem thus follows.  ∴ 

Theorem 1 states that there are three significant 
parameters that determine the performance of the vector 
model, and that there are four significant parameters that 
determine the performance of the merged tree model. 
However, the analysis is asymptotic, ignores constant 
factors, and is probabilistic. In the following section we 
report on a series of simulation experiments which provide 
verification of the theoretical analysis, and permits a 
determination of the magnitude of the constant factors 
involved in the performance analysis.  

V. EMPIRICAL ANALYSIS  
A series of simulations were performed to verify the 

correctness of the expressions for the RESPONSE_TIMEs 
given by Theorem 1, and to help determine the hidden 
constant factors. We simulated the operations of the 
supernode to compare the performances of the two schemes 
using a set of software tools created in Java.  Our simulation 
code is available from the authors upon request.   

We model the P2P networks application by simulating 
the dynamic execution of the supernode, where client nodes 
connect and disconnect in an uncoordinated and 
unpredictable fashion. As noted above, we model this setting 
by a stochastic, memoryless, continuous-time setting, see 

[14]. The arrival/connection of new nodes is modeled by a 
Poisson distribution with rate λ=1, and the duration of time a 
node stays connected to the supernode has an exponential 
distribution with parameter µ= 1/N. The number of nodes 
connected to the supernode rapidly converges to λ / µ= N. So 
in our model, a new node connects to the supernode every 
unit time, and the probability that a node is still connected at 
time t is given by e-(t – τ) / N where τ is the time when the node 
connected to the supernode and N is the average number of 
nodes connected to the supernode.  

Data sets of filenames for the client nodes were generated 
randomly, with set sizes given by a normal distributed. When 
a node connects to the supernode, it transfers to the 
supernode its index of filenames given by a GST. If the 
supernode uses the merged tree model, the GST of the new 
node must be merged or superimposed over the primary GST 
of the supernode. If the supernode uses the vector model, the 
GST of the new node is simply appended to the vector of 
GSTs stored in the supernode. Similarly when a node 
disconnects, its filenames must be removed from the primary 
GST in the merged tree model and from the vector of GSTs 
in the vector model.  

Our simulation runs in iterations. Each iteration is 
divided in two phases, as discussed in Section IV. The 
response time is computed as the sum of the running times of 
these two phases. In the first phase, a new node connects to 
the supernode, and zero, one, or more nodes disconnect from 
the supernode (as determined by the distribution discussed 
above). The data structures are then modified to reflect these 
connection changes. In the second phase of the iteration., a 
random set of string-matching queries are generated, 
normally distributed in size, and the supernode executes the 
lookup on each query and responds accordingly.  We record 
the time taken for a series of such two phase iterations, and 
plot the resulting response times. We create a series of plots 
by considering different independent variables. We consider 
three diffenent series by choosing the independent variable 
as 1) the mean query rate, 2) the mean file size, and 3) the 
mean number of simultaneous connections. Since we chose 
for each series one independent variable, we need to fix the 
other four parameters. By studying data from activity on P2P 
networks we selected mean values on the fixed parameters. 
Finally, we have divided each of the three series into three 
separate plots by varying one of the fixed parameters over a 
set of three fixed values. In what follows we have three 
series of experiments comparing the performance of the 
vector and the merged tree model,. Each series is divided 
into three separate plots with the same independent variable. 
Note also that the same randomly generated input sets was 
used for simulating both models. 

A. Plotting Response Time as function of Query Rate 
The first three charts (Figure 3) illustrate the results 

obtained for the response times plotted against the  
increasing number of queries per time unit. Plots are 
generated for three different values of the number of files per 
node. It can be seen that the effect of the increase in the 
number of queries per time unit does not affect the response 
times of the merged tree model much, but has a large effect 



on the response times of the vector model. For case when 
F=200, the performance of the vector model is better as long 
as the number of queries per time unit is less than 130. When 
the number of queries per time unit exceeds 130, the merged 
tree model performs better. 

B. Plotting Response Time as a function of File Size 
The next three charts (Figure 4) illustrate the results 

obtained for the response times plotted against an increasing 
number of files per node. Plots are shown for three different 
values of the number of connected nodes. It can be seen that 
the effect of the increase in the number of files per node does 
not affect the response times of the vector model much, but 
has a significant effect on the response times of the merged 
tree model. For the case when N=80, the performance of the 
merged  tree model is better as long as the number of files 
per node is less than 150. When the number of files per node 
exceeds 150, the vector model performs better. 

C. Plotting Response Time as function of Number of 
Connections 
The final three charts (Figure 5) illustrate the results 

obtained when the response times  were plotted against an 
increasing mean number of connected nodes. Plots are 
shown for  three different values of the number of queries per 
time unit. It can be seen that the effect of the increase in the 
number of connected nodes does not affect the response 
times of the merged tree model much, but has a large effect 
on the response times of the vector model. For the case Q= 
100, the performance of the vector model is better as long as 
the mean number of connected nodes is less than 100. When 
the number of connected nodes exceeds 100, the merged tree 
model performs better. 
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Figure 3.   Response times plotted as a function of increasing number of 
queries per time unit. One plot for each of 3 different F values (F=20, 
F=100, F=200). This test series used fixed average values N=80, L=30, 
S=10. 

Response times obtained for increasing directory sizes of a node 
(Q=100, L=30, S=10)
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Figure 4.   Response times plotted as a function of increasing average 
filename sizes per time unit. One plot for each of 3 different N values 
(N=20, N=40, N=80). This test series used fixed average values Q=100, 
L=30, S=10.  
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Figure 5.  Response times plotted as a function of increasing average 
number of connections to the supernode. One plot for each of 3 different Q 
values (Q=10, Q=50, Q=100). This test series used fixed average values 
F=200, L=30, S=10.  

D.  Estimates on Constant Factors 
All the results discussed above were obtained from 

simulations run on a system with a 1 GHz processor and a 1 
GB RAM. Due to the large memory capacity, the whole 
index could be loaded into the memory and processing could 
be done at a very high speed. When the simulations were run 
in a system with a 512 MHz processor and 128 MB RAM, 



the whole index could not be loaded into the memory. In 
such conditions, it was noticed that the performance of 
merged tree model was always much worse than the 
performance of the vector model, due to memory access 
overheads. For our reported analysisWe only considered 
cases where the supernode has a high speed processor and a 
large capacity RAM. A simple “eyeball” analysis of our 
results shows the following constant factors: 

When N, L and S are fixed at 80, 30 and 10 respectively, 
the expressions for the response times are 

Response_Time (MTM) = 20 F + 1.15 Q  
      Response_Time(VM) = 34 Q 

From the two expressions, we notice that when 1.5 Q > F, 
MTM performs better, otherwise the VM performs better. 

When Q, L and S are fixed at 100, 30 and 10 
respectively, the expressions for the response times are 

Response_Time (MTM) = 20 F + 150                                 
Response_Time (VM) = 43 N 

From these two expressions we notice that when 2 N > F, 
MTM performs better, otherwise the VM performs better. 

When F, L and S are fixed at 200, 30 and 10 respectively, 
the expressions for the response times are 

Response_Time (MTM) = 4250 + 1.5 Q                                  
Response_Time(VM) = 0.44 QN 

From these two expressions, we find that when QN > 
8000, MTM performs better, otherwise the VM performs 
better. 

Hence, overall our general conclusions can be 
summerized as follows: when the query rate exceeds the rate 
of data updates, the new merged model is preferable to the 
vector model. However, the fine details of our analysis allow 
us to consider combinations of several parameters, and 
thereby enable the design of near optimal indexing schemes 
via the incorporation of measurements of the parameters of 
particular applications. 

VI. CONCLUSIONS AND FUTURE WORK  
We studied the problem of determining an optimal 

indexing scheme for filesharing in a scalable P2P network 
system. We analyzed two different methods of indexing 
using a supernode as a proxy, both methods based on using 
generalized suffix trees for the indexing. The two different 
algorithmic models, the vector model and the merged tree 
model, were analyzed theoretically  using  probabilistic and 
asymptotic analysis. These results were complemented by an 
empirical study using a simulation of the execution of the 
supernode in a dynamic environment.  The empirical results 
provided both a validation of the theoretical results and 
details about the relevant constant factors involved in 
performance.  

From our results, we posit that an optimal P2P supernode 
indexing technique would be a hybrid of the two schemes 
which could respond to changing parameter values. The 
supernode could maintain both a primary GST and a vector 

of GSTs. Whenever a node connects to the supernode, its 
GST could be added to the vector of GSTs. The decisions as 
to which GSTs should be merged or inserted into the primary 
GST, could be based on several different factors determined 
by a priori information or usage patterns. The decision 
criteria could be a complex one, based on the expected 
connection duration, the directory sizes of the nodes, the 
current load determined by the number of connected nodes, 
and on the current query rate. Future work is required on 
more realistic probabilistic models of connection patterns, 
effective strategies for implementing hybrid indexing 
schemes, and finally, studying the impact of hash-type 
indexing and filtering techniques (such a Bloom filters) on 
improving overall performance.   
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