
Indexing Techniques for File Sharing in Scalable
Peer-to-Peer Networks

(Extended Abstract)

Fred S. Annexstein, Kenneth A. Berman, Mihajlo A. Jovanovic, and Kovendhan Ponnavaikko
Department of ECECS

 University of Cincinnati
 Cincinnati, OH 45221 USA

fred.annexstein@uc.edu , ken.berman@uc.edu , kponnava@ececs.uc.edu

Abstract-File sharing is a very popular service provided by
peer-to-peer (P2P) networks. In a P2P file-sharing network,
users share files and issue queries to the network to find the
locations of the files residing at other peer nodes. Due to
factors such as large user base and use of query broadcast
protocols, each node in the network receives many search
queries every second. Recently network developers have
incorporated proxy-enabled peers, or supernodes, which are
designed to enhance scalability by providing indexing services
to nodes on slower network connections. Typically, supernodes
build a vector or multi-index of all the filenames of the shared
files stored on other (slower) peers nodes connected to them. In
this paper we consider a new model whereby the index tables
of the individual nodes are merged into a single data structure
stored by the supernode. We analyze this new model in relation
to the standard vectorized data structure. We compare the
performance of these supernode indexing algorithms and
provide a theoretical analysis that is asymptotic and
probabilistic in nature. However, there are several significant
constant factors that the theory does not account for, and
which in practice are important for designing an optimal
system solution. We report herein on a series of simulation
experiments which provide 1) verification of the asymptotic
analysis of the formal framework, and 2) tools to determine the
magnitude of the constant factors involved in the performance
analysis. Our general conclusion is that when the query rate
exceeds the rate of data updates, the new merged model is
preferable to the vector model. However, the details of our
analysis allow us to consider combinations of several
parameters, and thereby enable the design of optimal indexing
schemes via the incorporation of measurements of the
parameters of particular applications.

Keywords --- peer-to-peer computing; text indexing; file
sharing; algorithm analysis.

I. 1. INTRODUCTION
Peer-to-peer (P2P) networks make new services available

to end-users by enabling their PCs to become active
participants in computing processes. File sharing has been
the most popular service for which P2P networks have been
used in recent years. In a P2P file-sharing network, users
share files and issue queries to the network to find out the

locations of the files residing at other peer nodes.

Research is ongoing with a focus on the scalability issues
in P2P networks [1,13,15]. The dimensions of scalability for
P2P file sharing applications are numerous, including
number of nodes hosted, the rate of connection and loss, the
size and composition of shared file indexes, and the rate and
scope of valid search queries. In the most popular P2P
protocols, such as Gnutella [3, 20], nodes are responsible for
responding to the queries that they receive, as well as
forwarding the queries in a broadcast. The size of many P2P
file sharing networks is quite large, with common reports
exceeding several hundred thousand simultaneous users. Due
to factors such as large user base and use of query broadcast
protocols, each node in the network receives and must
respond to many search queries every second. Recently, P2P
network developers have incorporated proxy-enabled peers,
or supernodes, which are design to enhance scalability by
providing indexing services to nodes on slower network
connections. In practice, supernodes are designed to index
all the filenames of the shared files stored on other (slower)
peers nodes connected to them [20].

Figure 1. A P2P network using supernodes as proxies for dial-up users.

In Figure 1, we show a P2P network containing both
normal host nodes and supernodes. Typically, end-users on
slower connections, particularly dial-up modems, will opt to
connect to public access supernodes, since they are assumed
to operate on higher-speed connections. The supernode
indexes the filenames of the files residing at connected hosts.
The supernode subsequently responds to queries arriving
from the network, and does not forward the queries to any of

Research supported in part by NSF Grant No. CCR-9877139, and an
Ohio Board of Regents’ Research Investment Grant.

the connected hosts. Thus the supernode shields the hosts
under it from bandwidth consuming query traffic. It has been
reported that the scalability and overall performance of the
network significantly improves with the introduction of
supernodes [20]. However, the scalability of the supernodes
themselves remains an issue; since for example, the question
remains how large a load can each supernode handle
effectively. Let us consider this question in detail.

Note that file storage and file transfer are not an issue for
supernodes. Although supernodes act as proxies for indexing
purposes, they are not involved in any file transfers that may
occur as a result of query hits, since these transfers occur via
direct connections between hosts. The primary factors
affecting the supernode performance, include the time taken
to process all the queries, and the time for updating the index
after connection and disconnection. In the supernode, the
time it takes to insert filenames into the main index and the
time it takes to delete filenames from the main index can be
significant.

The indexing problem for the supernode is to maintain a
dynamic index of all the filenames of all the hosts that are
connected to the supernode. These dynamic multi-indexes
are typically stored as a vector of index tables, which are
searched sequentially with each query. In this paper we
consider a new model for supernode indexing, whereby the
index tables are merged into a single data structure. In this
paper we analyze this new model in relation to the standard
vectorized data structure. We compare the performance of
supernode indexing algorithms and provide a theoretical
analysis that is asymptotic and probabilistic in nature. There
are, however, several constant factors that the theory does
not account for, and which in practice are important for
designing an optimal system solution. We report herein on a
series of simulation experiments which provide 1)
verification of the asymptotic analysis of the formal
framework, and 2) tools to determine the magnitude of the
constant factors involved in the performance analysis. For
our theoretical and experimental analysis we assume Poisson
distributions on the arrival rate of nodes, and an exponential
distribution on the duration time that a node stays connected,
as is done in [17]. These distributions are useful for modeling
and analyzing a highly dynamic, yet relatively stable system.
Our general conclusion is that when the query rate exceeds
the rate of data updates, the new merged model is preferable
to the vector model. In this paper, we give a detailed analysis
that accounts for a number of variable performance factors
such as number and rate of connections, size and rate of
change of filenames, and query rate and query string sizes.
The details of our analysis allow us to consider combinations
of parameters, and thereby enable the design of optimal
indexing schemes via the incorporation of measurements of
the parameters of particular applications.

II. TEXT INDEXING TECHNIQUES
Pattern matching is a classical algorithmic problem

[9,10,16]. There are several significant dynamic text
indexing methods discussed in the literature which enable
general pattern matching, including String B-Trees and
Suffix Trees [7, 12, 17], Dynamic Suffix Arrays [2, 11], and

other more recent methods [4, 5, 6, 8]. With respect to the
application of interest in this paper, that of pattern matching
using an index of dynamic lists of filenames, the generalized
suffix tree is a sufficiently optimal method. For all the
performance measures of interest, i.e., for search, insertion
and deletion, the time complexities, obtained by using
generalized suffix trees, are independent of the size of the
index. The search time is linear in terms of the length of the
pattern and the number of occurrences which is best possible.
The insertion and deletion times are both linearly
proportional to the length of the filename to be
inserted/deleted, which is again the best possible.

Suffix trees can be used to solve the exact pattern
matching problem in linear time. The classic application for
suffix trees is the substring problem. One is first given a text
S of length m, and a string-pattern p of length n we mush
either find an occurrence of p in S or determine that p is not
contained in S. With the use of a suffix tree, the text is
preprocessed in O(m) time; thereafter, whenever a string of
length n is input the algorithm searches for it in O(n) time
using that suffix tree. The O(m) preprocessing and O(n)
search result for the substring problem is extremely effective
for the P2P filename indexing problem, where many short
sequences of requested strings will be input as queries after
the suffix tree is built.

Algorithms for constructing suffix trees are described in
Weiner [18] and McCreight [12]. More recently, Ukkonen
[17] developed a conceptually simpler linear-time algorithm
for building suffix trees. A suffix tree for an m-character
text-string S is a rooted directed tree with exactly m leaves
numbered 1 to m. Each internal node, other than the root, has
at least two children and each edge is labeled with a
nonempty substring of S. No two edges out of a node can
have edge-labels beginning with the same character. The key
feature of the suffix tree is that for any leaf i, the
concatenation of the edge-labels on the path from the root to
leaf i exactly spells out the suffix of S that starts at position i.
That is, it spells out S[i..m]. For example, the suffix tree for
the string xabxac is shown in Figure 2. The path from the
root to the leaf numbered 1 spells out the full string S =
xabxac, while the path to the leaf numbered 5 spells out the
suffix ac, which starts in position 5 of S. As stated above, the
definition of a suffix tree for S does not guarantee that a
suffix tree for any string actually exists. The problem is that
if one suffix of S matches a prefix of another suffix of S then
no suffix tree obeying the above definition is possible, since
the path for the first suffix would not end at a leaf. For
example, if the last character of xabxac is removed, creating
string xabxa, then suffix xa is a prefix of suffix xabxa, so the
path spelling out xa would not end at a leaf.

To avoid this problem, we assume (as was true in Figure
2) that the last character of S appears nowhere else in S.
Then, no suffix of the resulting string can be a prefix of any
other suffix. To achieve this in practice, we can add a
character to the end of S that is not in the alphabet that string
S is taken from. Usually the character ‘$’ is used as the
“termination” character.

Figure 2. Suffix tree for the string “xabxac”

For our purpose of storing filenames, we use a special
kind of suffix tree called the generalized suffix tree. The
generalized suffix tree GST(P) for a set of strings P is the
tree obtained by superimposing incrementally the suffix trees
ST(p) for all the strings p in P. Two arcs are superimposed
whenever their labels have a common prefix (equal suffixes
can be associated with the same leaf).

While performing searches for query patterns, we must
find out all the filenames that have the pattern as a substring.
Due to this requirement, at each node in the generalized
suffix tree, we store the file identifiers of all the filenames
that have the string represented by that node as a substring.

III. SUPERNODE DYNAMIC INDEXING SCHEMES
The frequency of connections and disconnections in a

supernode can be very high. Since for every connection and
disconnection, we must perform insertions into and deletions
from the main index, the method used to maintain the main
index plays a major role in determining the efficiency of the
supernode’s performance. When a node connects to the
supernode, it must transfer to the supernode, the GST of all
its filenames. The standard method for a supernode to add or
delete a filenames index is to store a vector of pointers to the
roots of the individual indexes. We identify this standard
model as the vector model VM.

In the VM the supernode maintains a vector of GSTs,
containing the GSTs of all the nodes that are connected to it.
When a node connects to the supernode, its GST is
transferred to the supernode and a pointer to it must be added
to the vector. When the node disconnects, its tree pointer
must be removed from the vector.

In this paper we consider a new model, whereby the
index tables stored in the supernode are merged into a single
data structure. We identify this model as the merged tree
model MTM.

In the MTM the supernode maintains a single, primary
GST. When a node connects to the supernode, the new
node’s GST is inserted into the primary GST of the
supernode. When a node disconnects, the set of filenames
associated with that node must be removed from the primary
GST.

There are a number of tradeoffs when considering these
two models. In the merged tree model, significantly more
pre-processing of the data structure needs to be done when
nodes connect and disconnect. In the vector model, little or
no pre-processing is required. On the other hand, while
performing searches, in the merged tree model only a single

tree needs to be searched, whereas in the vector model, a
collection of trees, one per connected node, must be
searched. We now consider the problem of comparing the
overall performances of the two schemes.

IV. THEORETICAL ANALYSIS OF SUPERNODE
INDEXING

In this section, we present a formal analysis of the
performance characteristics of the two models. A large
number of parameters are involved in the performance
analysis, including the data set size and composition, the
number of nodes and their rate of addition and deletion from
the supernode, the rate and composition of queries. As noted
earlier, for our analysis we assume Poisson distributions on
the arrival rate of nodes, and an exponential distribution on
the duration time that a node stays connected. These
distributions are useful for modeling and analyzing a
relatively stable system, for example it can be shown that the
evolving system rapidly converges to a stable average
number N of nodes connected to the supernode [17]. We
focus our attention on the five parameters most relevant to
performance. We assume Poisson (or exponential)
distributions on all these random variables, and use the
following notation to denote the parameterized mean values:

* N is the average number of connections to the
supernode.

* F is the average number of files per node.

* L is the average length of a filename.

* S is the average length of a query string.

* Q is the average number of queries per unit time.

In order to compare the performances of the two
schemes, we make use of a value called the response time.
Formally, the response time is defined as the time taken by
each scheme to perform the following two phase operations,
which taken together is the sum of the processing time and
the search time.

 RESPONSE_TIME = Phase 1 + Phase 2, where

Phase 1: Time required to update the data structure to
account for the connection of new client nodes and the
disconnection of other previous client node.

Phase 2: Time required to perform and return results
from a set of queries on the updated data structure.

To compute and express formally a value for
RESPONSE_TIME we will normalize time units to be equal
to the expected arrival rate (1=λ) of new connections.
Therefore we have that, with high probability, in Phase 1 the
data structure is modified to account for O (1) node updates
changes. Also, we have that, with high probability, in Phase
2 the number of queries on the updated index is O(Q). We
have the following theorem that allows us to compare
asymptotically the performance of the two models.

Theorem 1. For any time t)(NΩ= , with high
probability p > 1 - 1/N, the response times can be bounded
above and below as follows: a) in the vector model,
RESPONSE_TIME (VM) = Θ(1) + Θ(QNS), and b) in the
merged tree model, RESPONSE_TIME (MTM) = Θ(FL) +
Θ(QS).

Proof.

The number of nodes connected to the supernode has a
Poisson distribution. Using standard techniques for bounding
the tail of the distribution [19] it can be shown that with
probability p > 1 – 1/N, the number of nodes connected to
the supernode at any time t)(NΩ= is)(NΘ , and
furthermore, the number of nodes added and deleted during a
unit of time is O (1). Finally, with high probability, we have
that the number of queries within a time unit is)(QΘ , and
furthermore, the size of each query string is)(SΘ .

In the vector model, the addition and the removal times
of each node are both constants because pointers to the GSTs
simply need to be added to or removed from the vector, and
each such operation is constant time. Thus the Phase 1
preprocessing time for VM is)1(Θ . The search time for
each query is linear in terms of the product of the size of
each query and the number of GSTs to be searched. Thus the
Phase 2 search time for VM would be)(QNSΘ .

In the merged tree model, the Phase 1 processing time,
depends linearly on the size of the data sets involved, and
thus would require Θ(FL) time. The Phase 2 search time for
MTM would be proportional to the product of the length of
each query and the number of queries, and thus equal to
Θ(QS). The theorem thus follows. ∴

Theorem 1 states that there are three significant
parameters that determine the performance of the vector
model, and that there are four significant parameters that
determine the performance of the merged tree model.
However, the analysis is asymptotic, ignores constant
factors, and is probabilistic. In the following section we
report on a series of simulation experiments which provide
verification of the theoretical analysis, and permits a
determination of the magnitude of the constant factors
involved in the performance analysis.

V. EMPIRICAL ANALYSIS
A series of simulations were performed to verify the

correctness of the expressions for the RESPONSE_TIMEs
given by Theorem 1, and to help determine the hidden
constant factors. We simulated the operations of the
supernode to compare the performances of the two schemes
using a set of software tools created in Java. Our simulation
code is available from the authors upon request.

We model the P2P networks application by simulating
the dynamic execution of the supernode, where client nodes
connect and disconnect in an uncoordinated and
unpredictable fashion. As noted above, we model this setting
by a stochastic, memoryless, continuous-time setting, see

[14]. The arrival/connection of new nodes is modeled by a
Poisson distribution with rate λ=1, and the duration of time a
node stays connected to the supernode has an exponential
distribution with parameter µ= 1/N. The number of nodes
connected to the supernode rapidly converges to λ / µ= N. So
in our model, a new node connects to the supernode every
unit time, and the probability that a node is still connected at
time t is given by e-(t – τ) / N where τ is the time when the node
connected to the supernode and N is the average number of
nodes connected to the supernode.

Data sets of filenames for the client nodes were generated
randomly, with set sizes given by a normal distributed. When
a node connects to the supernode, it transfers to the
supernode its index of filenames given by a GST. If the
supernode uses the merged tree model, the GST of the new
node must be merged or superimposed over the primary GST
of the supernode. If the supernode uses the vector model, the
GST of the new node is simply appended to the vector of
GSTs stored in the supernode. Similarly when a node
disconnects, its filenames must be removed from the primary
GST in the merged tree model and from the vector of GSTs
in the vector model.

Our simulation runs in iterations. Each iteration is
divided in two phases, as discussed in Section IV. The
response time is computed as the sum of the running times of
these two phases. In the first phase, a new node connects to
the supernode, and zero, one, or more nodes disconnect from
the supernode (as determined by the distribution discussed
above). The data structures are then modified to reflect these
connection changes. In the second phase of the iteration., a
random set of string-matching queries are generated,
normally distributed in size, and the supernode executes the
lookup on each query and responds accordingly. We record
the time taken for a series of such two phase iterations, and
plot the resulting response times. We create a series of plots
by considering different independent variables. We consider
three diffenent series by choosing the independent variable
as 1) the mean query rate, 2) the mean file size, and 3) the
mean number of simultaneous connections. Since we chose
for each series one independent variable, we need to fix the
other four parameters. By studying data from activity on P2P
networks we selected mean values on the fixed parameters.
Finally, we have divided each of the three series into three
separate plots by varying one of the fixed parameters over a
set of three fixed values. In what follows we have three
series of experiments comparing the performance of the
vector and the merged tree model,. Each series is divided
into three separate plots with the same independent variable.
Note also that the same randomly generated input sets was
used for simulating both models.

A. Plotting Response Time as function of Query Rate
The first three charts (Figure 3) illustrate the results

obtained for the response times plotted against the
increasing number of queries per time unit. Plots are
generated for three different values of the number of files per
node. It can be seen that the effect of the increase in the
number of queries per time unit does not affect the response
times of the merged tree model much, but has a large effect

on the response times of the vector model. For case when
F=200, the performance of the vector model is better as long
as the number of queries per time unit is less than 130. When
the number of queries per time unit exceeds 130, the merged
tree model performs better.

B. Plotting Response Time as a function of File Size
The next three charts (Figure 4) illustrate the results

obtained for the response times plotted against an increasing
number of files per node. Plots are shown for three different
values of the number of connected nodes. It can be seen that
the effect of the increase in the number of files per node does
not affect the response times of the vector model much, but
has a significant effect on the response times of the merged
tree model. For the case when N=80, the performance of the
merged tree model is better as long as the number of files
per node is less than 150. When the number of files per node
exceeds 150, the vector model performs better.

C. Plotting Response Time as function of Number of
Connections
The final three charts (Figure 5) illustrate the results

obtained when the response times were plotted against an
increasing mean number of connected nodes. Plots are
shown for three different values of the number of queries per
time unit. It can be seen that the effect of the increase in the
number of connected nodes does not affect the response
times of the merged tree model much, but has a large effect
on the response times of the vector model. For the case Q=
100, the performance of the vector model is better as long as
the mean number of connected nodes is less than 100. When
the number of connected nodes exceeds 100, the merged tree
model performs better.

Response times obtained for increasing number of queries per step
(N=80, L=30, S=10)

0

500

1000

1500

2000

2500

3000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of queries per step

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 m
il
li
s

e
c
o

n
d

s

Merged Tree Model
Vector Model

F = 20

Response times obtained for increasing number of queries per step
(N=80, L=30, S=10)

0

500

1000

1500

2000

2500

3000

3500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Number of queries per step

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 m
il
li
s

e
c

o
n

d
s

Merged Tree Model
Vector Model

F = 100

Response times obtained for increasing number of queries per step

(N=80, L=30, S=10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Number of queries per step

R
e
s
p

o
n

s
e
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

Merged Tree Model
Vector Model

F = 200

Figure 3. Response times plotted as a function of increasing number of
queries per time unit. One plot for each of 3 different F values (F=20,
F=100, F=200). This test series used fixed average values N=80, L=30,
S=10.

Response times obtained for increasing directory sizes of a node
(Q=100, L=30, S=10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 156 164 172 180 188

Number of files per node

R
e
s

p
o

n
s

e
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

Merged Tree Model
Vector Model

N = 20

Response times obtained for increasing directory sizes of a node
(Q=100, L=30, S=10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 156 164 172 180 188

Number of files per node

R
e
s
p

o
n

s
e
 t
im

e
 i
n

 m
il
li
s
e
c
o

n
d

s

Merged Tree Model
Vector Model

N = 40

Response times obtained for increasing directory sizes of a node
(Q=100, L=30, S=10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 156 164 172 180 188

Number of files per node

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 m
il
li
s

e
c

o
n

d
s

Merged Tree Model
Vector Model

N = 80

Figure 4. Response times plotted as a function of increasing average
filename sizes per time unit. One plot for each of 3 different N values
(N=20, N=40, N=80). This test series used fixed average values Q=100,
L=30, S=10.

Response times obtained for increasing number of connected nodes
(F=200, L=30, S=10)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

Number of connected nodes

R
e
s
p

o
n

s
e
 t

im
e

 i
n

 m
il
li
s

e
c
o

n
d

s

Merged Tree Model
Vector Model

Q = 10

 Response times obtained for increasing
f (F=200,

S)

0 500 100
0

150
0

200
0

250
0

300
0

350
0

400
0

450
0

500
0

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78

Number of connected
nodes

Res
pon
se
tim
e in
mill
ise
con
ds

Merged Tree
ModelVector
Model

Q =
50

Response times obtained for increasing number of connected nodes
(F=200, L=30, S=10)

0

1000

2000

3000

4000

5000

6000

7000

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92 98 104 110 116 122 128 134

Number of connected nodes

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 m
il
li
s

e
c

o
n

d
s

Merged Tree Model
Vector Model

Q = 100

Figure 5. Response times plotted as a function of increasing average
number of connections to the supernode. One plot for each of 3 different Q
values (Q=10, Q=50, Q=100). This test series used fixed average values
F=200, L=30, S=10.

D. Estimates on Constant Factors
All the results discussed above were obtained from

simulations run on a system with a 1 GHz processor and a 1
GB RAM. Due to the large memory capacity, the whole
index could be loaded into the memory and processing could
be done at a very high speed. When the simulations were run
in a system with a 512 MHz processor and 128 MB RAM,

the whole index could not be loaded into the memory. In
such conditions, it was noticed that the performance of
merged tree model was always much worse than the
performance of the vector model, due to memory access
overheads. For our reported analysisWe only considered
cases where the supernode has a high speed processor and a
large capacity RAM. A simple “eyeball” analysis of our
results shows the following constant factors:

When N, L and S are fixed at 80, 30 and 10 respectively,
the expressions for the response times are

Response_Time (MTM) = 20 F + 1.15 Q
 Response_Time(VM) = 34 Q

From the two expressions, we notice that when 1.5 Q > F,
MTM performs better, otherwise the VM performs better.

When Q, L and S are fixed at 100, 30 and 10
respectively, the expressions for the response times are

Response_Time (MTM) = 20 F + 150
Response_Time (VM) = 43 N

From these two expressions we notice that when 2 N > F,
MTM performs better, otherwise the VM performs better.

When F, L and S are fixed at 200, 30 and 10 respectively,
the expressions for the response times are

Response_Time (MTM) = 4250 + 1.5 Q
Response_Time(VM) = 0.44 QN

From these two expressions, we find that when QN >
8000, MTM performs better, otherwise the VM performs
better.

Hence, overall our general conclusions can be
summerized as follows: when the query rate exceeds the rate
of data updates, the new merged model is preferable to the
vector model. However, the fine details of our analysis allow
us to consider combinations of several parameters, and
thereby enable the design of near optimal indexing schemes
via the incorporation of measurements of the parameters of
particular applications.

VI. CONCLUSIONS AND FUTURE WORK
We studied the problem of determining an optimal

indexing scheme for filesharing in a scalable P2P network
system. We analyzed two different methods of indexing
using a supernode as a proxy, both methods based on using
generalized suffix trees for the indexing. The two different
algorithmic models, the vector model and the merged tree
model, were analyzed theoretically using probabilistic and
asymptotic analysis. These results were complemented by an
empirical study using a simulation of the execution of the
supernode in a dynamic environment. The empirical results
provided both a validation of the theoretical results and
details about the relevant constant factors involved in
performance.

From our results, we posit that an optimal P2P supernode
indexing technique would be a hybrid of the two schemes
which could respond to changing parameter values. The
supernode could maintain both a primary GST and a vector

of GSTs. Whenever a node connects to the supernode, its
GST could be added to the vector of GSTs. The decisions as
to which GSTs should be merged or inserted into the primary
GST, could be based on several different factors determined
by a priori information or usage patterns. The decision
criteria could be a complex one, based on the expected
connection duration, the directory sizes of the nodes, the
current load determined by the number of connected nodes,
and on the current query rate. Future work is required on
more realistic probabilistic models of connection patterns,
effective strategies for implementing hybrid indexing
schemes, and finally, studying the impact of hash-type
indexing and filtering techniques (such a Bloom filters) on
improving overall performance.

BIBLIOGRAPHY
[1] Annexstein, F.S., Berman, K.A. and Jovanovic, M. Latency Effects

on Reachability in Large-scale Peer-to-Peer Networks. Proc. 13th
ACM Symposium on Parallel Algorithms and Architectures, 2001.

[2] Amir, A., Farach, M., Galil, Z., Giancarlo, R., and Park, K. Dynamic
dictionary matching. Journal of Computer and System Sciences,
49(2):208-222, 1994.

[3] Clip2. The Gnutella Protocol Specification v0.4 (Document Revision
1.2). Internet document (www.clip2.com/GnutellaProtocol04.pdf),
2000.

[4] Ferragina, P., and Grossi, R. Fast incremental text indexing. Proc. 6th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
531-540, 1995.

[5] Ferragina, P. Dynamic text indexing under string updates. Journal of
Algorithms, 22(2):296-328, 1997.

[6] Ferragina, P., and Grossi, R. Improved dynamic text indexing. Journal
of Algorithms, 31(2):291-319, 1998.

[7] Grossi, R., and Italiano, G.F. Suffix trees and their applications in
string algorithms. Proc. 1st South American Workshop on String
Processing, pages 57-76, 1993.

[8] Gu, M., Farach, M., and Biegel, R. An efficient algorithm for
dynamic text indexing. Proc. 5th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 697-704, 1994.

[9] Karp, R.M., Miller, R.E., and Rosenberg, A.L. Rapid identification of
repeated patterns in strings, trees and arrays. ACM STOC ‘72, pages
125-136, 1972.

[10] Knuth, D.E., Morris, J.H., and Pratt, V.R. Fast pattern matching in
strings. SIAM Journal on Computing, 6:323-350, 1977.

[11] Manber, U., and Myers, E.W. Suffix Arrays: A New Method for On-
Line String Searches. SIAM Journal on Computing, pages 935-948,
1993.

[12] McCreight, E.M. A space-Economical Suffix Tree Construction
Algorithm. Journal of the ACM, 23(2):262-272, 1976.

[13] Oram, A., Editor. Peer-to-Peer: Harnessing the Power of Disruptive
Technology, O’Reilly, 2001.

[14] Pandurangan, G., Raghavan, P., and Upfal, E. Building Low-
Diameter P2P Networks. Proc. 42nd IEEE Symposium on
Foundations of Computer Science, 2001.

[15] Shirky, C. What is P2P… and what isn’t. Internet document
(http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-
whatisp2p.html), 2000.

[16] Shoaff, W. Pattern Matching in Text. Internet document
(http://www.cs.fit.edu/~wds/classes/algorithms/Text/text.ps), 1999.

[17] Ukkonen, E. On-line construction of suffix trees. Algorithmica,
14(3):249-260, 1995.

[18] P. Weiner. Linear Pattern Matching Algorithms. Proc. 14th IEEE
Annual Symp. on Switching and Automata Theory, pp1-11, 1973

[19] Ross, S.M.. Applied Probability Models with Optimization
Applications, Holden-Day, San Francisco, 1970

[20] Gnutella Projects, www.gnutella.com and www.limewire.com

