
1

WEBD 236 Lab 4
If you use an external source (i.e. a web-page, the required textbook, or an additional book) to help you

answer the questions, be sure to cite that source. You should probably always be citing a source.

Problem
This is the last modification of your forum assignment. Starting from your previous lab assignment (the

one with answers, clickable tag names, and data validation), you will be adding file attachments to

questions, mini-markdown, and role-based access controls. You should add the following features

 Role based access controls. There should be three roles: User, Editor, and Administrator. The

permissions associated with these roles are as follows:

o User: “answer_create.” In other words, a registered user can post answers.

o Editors: “answer_delete,” “question_create,” “question_delete,” and “question_edit.”

In other words, an editor can delete anyone’s answers or questions, and can create and

edit questions.

o Administrators: “admin_page,” “user_delete,” “user_edit.” In other words,

administrators can access the administrative functions page (changing permissions and

group membership), and delete or edit any user.

You should use these permissions to enforce access to certain controllers and to display certain

kinds of links. However, any user can manage “their own stuff.” This means that the edit user

controller should work for administrators and the user himself (to change e-mail addresses,

passwords, etc.) For example, a regular user can delete his own answer.

This is an exercise in integration. The RBAC library was already demonstrated as part of the

course, and is available for download, but it works in a different context. You will need to

integrate this code into your previous lab assignment. Your solution should automatically

generate the right permissions and store them in the database. Furthermore, you should have

three users already set up (one administrator, one editor, and one user) for testing your

solution. The administrator account should be a member of all three roles, the editor should be

a member of editors and users, and the user should just be a member of users. You should

provide the e-mail addresses and passwords for these users when you submit your assignment.

 Mini-markdown. While not nearly a complete markdown implementation, the simple

markdown function presented as an example in the course should also be integrated. In

particular, answers and forum questions should support the mini-markdown syntax. The

answers and questions should be stored in the database in markdown and only converted to

HTML as the page is being rendered through the view. Be sure to escape any HTML so that

injection-based attacks aren’t possible.

2

 Attachments. Each question can now have one or more file attachments associated with it.

Again, this is an exercise in integration as there were examples presented in class for how to

handle file attachments. Only those users with the “question_edit” permission should be able

to upload or delete file attachments. However, anybody (even an unregistered user) should be

able to download and view the attachments.

The following screen shots should help you to understand more fully. A logged in administrator can

access the administrative functions page, manage groups, users, and files. This should work just like the

examples from class:

3

An editor can add and edit posts. Notice the use of mini-markdown in the example below:

4

Users can add answers (and delete their own answers):

5

Of course, users can always view, edit, and delete their accounts:

An administrator can edit or delete any user, but editors can only view another’s profile:

6

On the other hand, editors can delete any question or answer. Notice as well below that an editor can

attach a file to any question (from the view question screen):

7

Regular users (even unregistered ones as shown below) can download and view attachments. Notice

that for users that are not logged in, the answer capability isn’t available:

Be sure to maintain referential integrity on everything in the database. Orphaned files should be

cleaned up through the administrative interface (see the earlier screen shot).

Finally, you should prevent any URL fishing attacks by protecting your controllers (in other words, it’s

not sufficient to not display links in the UI, you should also prevent unauthorized actions typed directly

into the address bar of the browser). All unauthorized accesses should be logged:

8

Basic Requirements:
 Add in RBAC for Users, Editors, and Administrators (with permissions as defined previously).

 Allow questions and answers to have mini-markdown syntax (but prevent HTML injection).

 Allow file-uploads, downloads and viewing on questions.

 Only display links in the view for operations permitted to that user.

 Prevent access to operations via URL fishing. Log all unauthorized access attempts.

 Maintain referential integrity on all tables. Orphaned files should be cleaned up via a link in the

administrative interface.

 All lab 3 requirements should still also be met.

 If you are a WEBD student, update your personal portfolio using this project!

Bonus
You can implement the “forgot a password” functionality discussed in week 9 for an extra 10

points.

Helpful Hints
 See the RBAC, markdown, and file-upload examples posted on the supplemental web site. This

entire lab is to integrate these features into your forum project.

 It would be a very, very good idea to have your initial database auto-generated. This would

involve the creation of tables if they did not exist, inserting all permissions, groups, and three

initial users as well. See the Todo file uploads application in Week 11 for how this can be done.

 Logging can really help to debug.

 You should use SQLite (not MySQL) for this project.

 Make sure that your project works on any server on any directory. In other words, you should

never hard-code a URL with the name or IP address of your machine. We won’t be using your

machine when we test it. Also, you should not hard-code a directory name in your application.

It should run as http://localhost/forum/index or as http://localhost/myforum/index or any other

directory URL.

 Use the MVC framework developed in class. This will help, since the project is fairly large.

http://localhost/forum/index
http://localhost/myforum/index

9

Submission instructions
Create a ZIP file of your entire project contents as it is found under your

C:\XAMPP\htdocs\webd236\forum-<yourname>\ directory. This ZIP file should contain your database,

your PHP scripts, style files, etc. Follow proper coding conventions (indentation, commenting, etc.) that

you would have learned in previous courses.

Submit the ZIP file to the dropbox for this assignment in the course.

