
WEBD 236
Web Information Systems Programming

Week 7

Copyright © 2013-2017
Todd Whittaker and Scott Sharkey

(sharkesc@franklin.edu)

Agenda

• This week’s expected outcomes

• This week’s topics

• This week’s homework

• Upcoming deadlines

• Questions and answers

Week 7 Outcomes

• Employ advanced features of functions (pass by

reference, closures, variable argument lists) to

solve problems.

• Distinguish between objects and scalar data

types.

• Describe the five properties of object-orientation.

• Employ encapsulation, inheritance, and

polymorphism to build web applications.

Functions

• Basic review
 Use function keyword to create a function

 Use the name of the function with () to call it.

4

function uninteresting() {

 return 42;

}

$x = uninteresting();

Functions

• Basic review
 Use function keyword to create a function

 Use the name of the function with () to call it.

5

function uninteresting() {

 return 42;

}

$x = uninteresting();

Function names become

global symbols. Defining

two functions with the

same name (or including

the defining file multiple

times) is an error.

Functions

• Basic review
 Can specify arguments to be passed into

parameters.

6

function double($num) {

 return 2 * num;

}

$x = double(21);

Functions

• Basic review
 All arguments are passed by value, including

arrays.

7

function doubleAll($arr) {

 foreach ($arr as $key => $value) {

 $arr[$key] = $arr[$key] * 2;

 }

}

$numbers = array(1, 2, 3, 4, 5);

doubleAll($numbers);

print_r($numbers);

Functions

• Basic review
 All arguments are passed by value, including

arrays.

8

function doubleAll($arr) {

 foreach ($arr as $key => $value) {

 $arr[$key] = $arr[$key] * 2;

 }

}

$numbers = array(1, 2, 3, 4, 5);

doubleAll($numbers);

print_r($numbers);

Array

(

 [0] => 1

 [1] => 2

 [2] => 3

 [3] => 4

 [4] => 5

)

Functions

• Basic review
 Arguments can be passed by reference so

that the modifications made are seen outside

the function.

9

function doubleAll(&$arr) {

 foreach ($arr as $key => $value) {

 $arr[$key] = $arr[$key] * 2;

 }

}

$numbers = array(1, 2, 3, 4, 5);

doubleAll($numbers);

print_r($numbers);

Functions

• Basic review
 Arguments can be passed by reference so

that the modifications made are seen outside

the function.

10

function doubleAll(&$arr) {

 foreach ($arr as $key => $value) {

 $arr[$key] = $arr[$key] * 2;

 }

}

$numbers = array(1, 2, 3, 4, 5);

doubleAll($numbers);

print_r($numbers);

Array

(

 [0] => 2

 [1] => 4

 [2] => 6

 [3] => 8

 [4] => 10

)

function doubleAll(&$arr) {

 foreach ($arr as $key => $value) {

 $arr[$key] = $arr[$key] * 2;

 }

}

$numbers = array(1, 2, 3, 4, 5);

doubleAll($numbers);

print_r($numbers);

Functions

• Basic review
 Arguments can be passed by reference so

that the modifications made are seen outside

the function.

11

Array

(

 [0] => 2

 [1] => 4

 [2] => 6

 [3] => 8

 [4] => 10

) Functions that affect the program this

way are said to have side effects, and

these must be documented in

comments.

Functions

• Basic review
 You can specify default values for

arguments.

12

function multiplyAll(&$arr, $by = 2) {

 foreach ($arr as $key => $value) {

 $arr[$key] = $arr[$key] * $by;

 }

}

$numbers = array(1, 2, 3, 4, 5);

multiplyAll($numbers);

print_r($numbers);

If you don’t specify a

second parameter,

then it will use the

default value of 2 for

$by.

Functions

• Advanced features
 To prevent name clashes, use a namespace

to enclose your libraries of functions

13

namespace webd236 {

 function largest() {

 // ... omitted ...

 }

 // more functions defined here

}

$result = webd236\largest(4, 6, 3, 1, 8, 2);

Functions

• Advanced features
 To prevent name clashes, use a namespace

to enclose your libraries of functions

14

namespace webd236 {

 function largest() {

 // ... omitted ...

 }

 // more functions defined here

}

$result = webd236\largest(4, 6, 3, 1, 8, 2);

Namespace

declaration must

be the first

statement in a

script.

Functions

• Advanced features
 You can pass a function as a parameter to

another function.

15

function map($arr, $func) {

 $result = array();

 foreach ($arr as $key => $value) {

 $result[$key] = $func($value);

 }

 return $result;

}

function double($num) {

 return 2 * $num;

}

$numbers = array(1, 2, 3, 4, 5);

$doubled = map($numbers, 'double');

Functions

• Advanced features
 Functions can be assigned to variables and

both called and passed around.

16

function map($arr, $func) {

 $result = array();

 foreach ($arr as $key => $value) {

 $result[$key] = $func($value);

 }

 return $result;

}

$f = function($num) {

 return $num * 2;

};

$numbers = array(1, 2, 3, 4, 5);

$doubled = map($numbers, $f);

Functions

• Advanced features
 For a “throw away” function, you can use an

anonymous function.

17

function map($arr, $func) {

 $result = array();

 foreach ($arr as $key => $value) {

 $result[$key] = $func($value);

 }

 return $result;

}

$numbers = array(1, 2, 3, 4, 5);

$doubled = map($numbers, function($num) {return $num * 2;});

Functions

• Advanced features
 When you treat functions as variables, it

creates a closure.

18

function counter($start = 1) {

 $counter = $start;

 return function() use (&$counter) {

 return $counter++;

 };

}

$func = counter(5);

$arr = array();

for ($i = 0; $i < 5; ++$i) {

 $arr[] = $func();

}

Array

(

 [0] => 5

 [1] => 6

 [2] => 7

 [3] => 8

 [4] => 9

)

Functions

• Advanced features
 When you treat functions as variables, it

creates a closure.

19

function makeCounter($start = 1) {

 $counter = $start;

 return function() use (&$counter) {

 return $counter++;

 };

}

$counter = makeCounter(5);

$arr = array();

for ($i = 0; $i < 5; ++$i) {

 $arr[] = $counter();

}

Array

(

 [0] => 5

 [1] => 6

 [2] => 7

 [3] => 8

 [4] => 9

)

Data for the operation of the

function is kept hidden inside

the function, and the function

retains this state from call to

call. Much like an object.

Object Oriented Concepts

• What is an object?
 All objects have 3 characteristics

 State – data associated with the object

 Behavior – code associated with the object

 Identity – a location where the object exists in

memory

20

Object Oriented Concepts

• What is an object

21

Object Oriented Concepts

• What is an object?
 State (properties)

 Data kept inside the object.

 The internal representation of the object need not

be the same as how it is seen from the outside.

 Ex: PDO object in represents a connection to a

database using a DSN and username/password

credentials.

22

Object Oriented Concepts

• What is an object?
 Behavior (method)

 A function kept inside an object

 Has access to all the properties of the object as

well as any parameters and global variables.

23

Object Oriented Concepts

• What is an object?
 Identity (container)

 Memory location of the object.

 One variable that holds many other variables

(methods and properties) within itself.

 Very similar to an associative array.

24

Object-oriented Programming

• Definition of object:
 An object is the combination of data and the

functions (called methods) that act on that

data in a single package.

 Contrast with structured approach
 Write many independent functions that accept

parameters containing the data to act on.

 E.g. all array functions have an array as the first

parameter: array_slice($array, $offset, $length,

$preserve_keys)

25

Object-oriented Programming

• Contrasting the two approaches
 A structured approach:

An object-oriented approach:

26

$array = array(1, 2, 3, 4, 5);

$array = array_slice($array, 3);

$array = array(1, 2, 3, 4, 5);

$array -> slice(3);
The data on which slice

operates is already part of the

object. Note: this isn’t working

PHP code; it just illustrates the

OO approach.

Object-oriented Programming

• What is a class?
 A class is the template for making an object.

 Defines what data the object holds

 Defines the methods that act on that object

 Defines a special method that builds the object

called a constructor.

27

Think of it as a blueprint. You

can build many houses based

on the same blueprint, but

they’re not the same house.

Object-oriented Programming

• Ex: a counter class

28

class Counter {

 private $count;

 public function __construct($start = 1) {

 $this -> count = $start;

 }

 public function next() {

 $result = $this -> count;

 ++$this -> count;

 return $result;

 }

}

Object-oriented Programming

• Ex: a counter class

29

class Counter {

 private $count;

 public function __construct($start = 1) {

 $this -> count = $start;

 }

 public function next() {

 $result = $this -> count;

 ++$this -> count;

 return $result;

 }

}

$arr = array();

$counter = new Counter(5);

for ($i = 0; $i < 5; ++$i) {

 $arr[] = $counter -> next();

}

Object-oriented Programming

• Mechanics of OOP
 Inside a class, the current object is called

$this.

 Use the member access operator (->) both

external to and internal to the object to

access methods and data items.

 Constructor is called __construct

 Use the new operator and the name of the

class to construct an object.

30

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Increased modularity: the unit of modularity

becomes the object and systems become a

set of cooperating objects. Objects are

typically smaller, and therefore there are

more modules.

31

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Simplified analysis: The real world consists

of objects. In the real world, objects have

attributes and behaviors. When the method

of programming and the real world align,

then the process of analyzing the problem

becomes simpler.

32

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Easier testing: With increased modularity

(i.e. smaller, more tightly focused objects)

comes easier testing of those objects. Tests

can be written to validate the behavior of

each object independently of the entire

system.

33

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Increased comprehension: Since objects

are kept small (on the order of perhaps a

couple of hundred lines of code)

programmers are better able to keep the

entire state of the object in their working

memory at once.

34

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Looser coupling: Coupling is a measure of

the degree to which a class depends on

other classes to work properly. It is rare that

an object acts in isolation of other objects,

the connections between objects are clearly

defined by the methods.

35

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Tighter cohesion: Cohesion is a measure of

the degree to which a class models a single

concept. Objects are smaller modules of

modeling than those found in non-object

oriented systems, and hence tend to

promote tighter cohesion.

36

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Increased reuse: Because objects are

loosely coupled and highly cohesive, they

are easier to reuse within the same or

different systems.

37

Object-Oriented Benefits

• Many benefits to grouping data and

methods together:
 Better maintainability: All of the

aforementioned benefits lead to systems that

are much more flexible to change and much

easier to fix when bugs are encountered.

38

5 Properties of OOP

• “C A PIE”
 Composition: one object becomes data within

another object. Defined by the phrase “has-a”

 Abstraction: identifying those real-world attributes

that we should model in software.

 Polymorphism: Behavior varies based on the type of

the object.

 Inheritance: A relationship between classes defined

by the phrase “is-a”

 Encapsulation: information hiding

39

5 Properties of OOP

• Composition

40

class User {

 private $email;

 private $dob;

 public function __construct($email, $dob) {

 $this -> email = $email;

 $this -> dob = $dob;

 }

 public function isOver21() {

 $now = new DateTime();

 $now -> modify("-21 years");

 return $now->getTimestamp() >

 $this -> dob -> getTimeStamp();

 }

}

$usr = new User("user@foo.com", new DateTime('1989-03-12'));

A user “has-a” date

object as an

attribute.

5 Properties of OOP

• Abstraction
 What attributes of a “user” should we model?

 What attributes of a “user” are irrelevant?

 What behaviors of a “user” should we

model?

 What behaviors of a “user” are irrelevant?

 How do we model them?
 Nouns become classes/objects

 Verbs become methods

41

5 Properties of OOP

• Encapsulation (information hiding):
 public: the item (member variable, method, etc.) is

accessible from outside the class and also from

inside the class

 private: the item is not accessible from outside the

class, but is accessible from inside the class.

 protected: the item is not accessible from outside the

class, but is accessible from inside the class and

from within descendant classes.

42

5 Properties of OOP

• Inheritance
 Determined by the “is-a” (or “is a kind of”)

relationship.
 Examples:

 All dogs are animals.

 All administrators are users.

 All users are “models.”

 When administrator inherits from user,

administrator gets all the properties and

methods of user for “free.”

43

5 Properties of OOP

• Inheritance

44

class Animal {

 public function eat() {

 print "Animal is eating.";

 }

}

class Dog extends Animal {

 public function speak() {

 print "Woof!";

 }

}

$dog = new Dog();

$dog -> eat();

$dog -> speak();

Outputs:

Animal is eating.

Woof!

5 Properties of OOP

• Inheritance

45

class Animal {

 public function eat() {

 print "Animal is eating.";

 }

}

class Dog extends Animal {

 public function speak() {

 print "Woof!";

 }

}

$dog = new Dog();

$dog -> eat();

$dog -> speak();

Animal is the base

(or parent) class and

Dog is the derived

(or child) class.

5 Properties of OOP

• Polymorphism
 Often the base class provides almost, but not

quite, the right behavior (method).

 If you need to change the behavior, you

override the method in the derived class by

defining a new method with the same name.

46

5 Properties of OOP

• Polymorphism

47

class Animal {

 public function eat() {

 print "Animal is eating.";

 }

}

class Dog extends Animal {

 public function eat() {

 print "Chomp!";

 }

}

$dog = new Dog();

$dog -> eat();

5 Properties of OOP

• Polymorphism
 If there is no reasonable implementation of

the parent class function, make both the

function and the class abstract.

 This forces the derived classes to write their

own implementation, but the base class can

still write methods that use it.

 To prevent overriding in a derived class, use

the key word final.

48

5 Properties of OOP

• Polymorphism

49

abstract class Animal {

 public abstract function speak();

 public final function greet() {

 $this -> speak();

 $this -> speak();

 $this -> speak();

 }

}

class Dog extends Animal {

 public function speak() {

 print "Woof!";

 }

}

$dog = new Dog();

$dog -> greet();

5 Properties of OOP

• Polymorphism

50

abstract class Animal {

 public abstract function speak();

 public final function greet() {

 $this -> speak();

 $this -> speak();

 $this -> speak();

 }

}

class Dog extends Animal {

 public function speak() {

 print "Woof!";

 }

}

$dog = new Dog();

$dog -> greet();

Speak isn’t actually

defined until a derived

class exists, yet the

base class can use it.

Template Method

pattern.

5 Properties of OOP

• Polymorphism
 A class that is 100% abstract is called an

interface.
 It only determines what behaviors should be

provided.

 Class names often end in “-able”

 Use the key word implements to create a

concrete class that corresponds to the

interface.

51

5 Properties of OOP

• Polymorphism

52

interface Saveable {

 public function save();

}

abstract class Model implements Saveable {

 private $id;

 public function save() {

 // save the id

}}

class User extends Model {

 private $email;

 public function save() {

 parent::save();

 // save the email

}}

OOP Miscellany

• Sometimes an attribute or method belongs

to the entire class rather than to each object.
 Examples

 Constants that are used to affect the behaviors of

methods (i.e. FETCH_ASSOC)

 Variables that all instances share (i.e. a database

object shared among all models)

 Methods that don’t act on an object (i.e. a findById

function)

 Called static members of the class.

53

OOP Miscellany

54

abstract class Model implements Saveable {

 private static $db = null;

 public static function getDb() {

 if (self::$db == null) {

 try {

 self::$db = new PDO('sqlite:scratch.db3');

 } catch (PDOException $e) {

 die("Could not open database.");

 }

 }

 return self::$db;

 }

 // ...

}

OOP Miscellany

55

abstract class Model implements Saveable {

 private static $db = null;

 public static function getDb() {

 if (self::$db == null) {

 try {

 self::$db = new PDO('sqlite:scratch.db3');

 } catch (PDOException $e) {

 die("Could not open database.");

 }

 }

 return self::$db;

 }

 // ...

}

class User extends Model {

 private $email;

 public function save() {

 $db = parent::getDb();

 // use the database here

 }

}

OOP Miscellany

• PHP is reflective
 You can ask questions like

 What’s the name of the class for this object?

 Does a method named “foo” exist in this object?

 Does the current object inherit from the class

“bar”?

 Very useful for building frameworks for active

records (database access abstraction).
 List of functions at

http://www.php.net/manual/en/ref.classobj.php

56

http://www.php.net/manual/en/ref.classobj.php

Example: Better Models

• Base models on convention
 Primary key is always a field called ‘id’

 Get rid of global variable ‘db’

 Support common operations like
 Create, retrieve, update, delete (CRUD)

• Screen share (code available from

http://cs.franklin.edu/~sharkesc/webd236)

57

http://cs.franklin.edu/~whittakt/WEBD236

Upcoming Deadlines

• Readings for next week
 Chapter 15 in PHP and MySQL

• Assignments
 Homework 6 due end of week 7

 Midterm exam due end of week 8

 Lab 3 due end of week 10

• Next week:
 Regular expressions

General Q & A

• Questions?

• Comments?

• Concerns?

