
WEBD 236
Web Information Systems Programming

Week 11

Copyright © 2013-2017
Todd Whittaker and Scott Sharkey

(sharkesc@franklin.edu)

Agenda

• This week’s expected outcomes

• This week’s topics

• This week’s homework

• Upcoming deadlines

• Questions and answers

Week 11 Outcomes

• Explore the security implications of file

uploads

• Write code that receives, stores,

processes, and transmits files uploaded

via the web browser.

• List the advantages of using a web-

framework for application development

• List and explain the typical features of a

web-framework

File Uploads

• Most web-apps have file upload

capabilities
• Attachments to items

• User profile pictures

• Etc.

4

File Uploads

• Most web-apps have file upload

capabilities
• Attachments to items

• User profile pictures

• Etc.

5

Standard browser

file attachment

control.

File Uploads

•Most web-apps have file upload capabilities
Attachments to items

User profile pictures

Etc.

6

Standard browser

file attachment

control.

<form action="@@file/add@@" method="post"

 enctype="multipart/form-data">

 <input type="hidden" id="todoId" name="todoId"

 value="{{$todo->getId()}}" />

 <label for="file">Add a file:</label>

 <input type="file" id="file" name="file" />

 <input type="submit" value="Upload" />

</form>

File Uploads

• On the server side, the $_FILES super-global contains

information about all uploaded files.

• Simplest code:

7

<html>

 <head><title>File upload</title></head>

 <body>

 <form action="fileupload.php" method="post“

 enctype="multipart/form-data">

 <input type="file" name="myFile" />

 <input type="submit" value="Upload!" />

 </form>

 <pre><?php print_r($_FILES, true); ?></pre>

 </body>

</html>

File Uploads

• On the server side, the $_FILES super-

global contains information about all

uploaded files.
• Simplest code:

8

<html>

 <head><title>File upload</title></head>

 <body>

 <form action="fileupload.php" method="post“

 enctype="multipart/form-data">

 <input type="file" name="myFile" />

 <input type="submit" value="Upload!" />

 </form>

 <pre><?php print_r($_FILES, true); ?></pre>

 </body>

</html>

Array

(

 [myFile] => Array

 (

 [name] => Scott_Sharkey_MG_5658_100x100.jpg

 [type] => image/jpeg

 [tmp_name] => C:\xampp\tmp\phpD476.tmp

 [error] => 0

 [size] => 6632

)

)

File Uploads

• On the server side, the $_FILES super-

global contains information about all

uploaded files.
• Simplest code:

9

<html>

 <head><title>File upload</title></head>

 <body>

 <form action="fileupload.php" method="post“

 enctype="multipart/form-data">

 <input type="file" name="myFile" />

 <input type="submit" value="Upload!" />

 </form>

 <pre><?php print_r($_FILES, true); ?></pre>

 </body>

</html>

Array

(

 [myFile] => Array

 (

 [name] => Scott_Sharkey_MG_5658_100x100.jpg

 [type] => image/jpeg

 [tmp_name] => C:\xampp\tmp\phpD476.tmp

 [error] => 0

 [size] => 6632

)

)

File temporarily held

at this location.

MIME (Multipurpose Internet

Mail Extensions) type.

Unchecked, provided by

browser.

Max file upload size

controlled by php.ini.

File Uploads

• Moving the file to the right location

10

foreach ($_FILES as $file) {

 $path = getcwd() . DIRECTORY_SEPARATOR . 'uploads' .

 DIRECTORY_SEPARATOR;

 $success = move_uploaded_file($file['tmp_name'], $path .

 $file['name']);

 if (!$success) {

 die("Problem moving file.");

 }

}

File Uploads

• Moving the file to the right location

11

foreach ($_FILES as $file) {

 $path = getcwd() . DIRECTORY_SEPARATOR . 'uploads' .

 DIRECTORY_SEPARATOR;

 $success = move_uploaded_file($file['tmp_name'], $path .

 $file['name']);

 if (!$success) {

 die("Problem moving file.");

 }

}
What is wrong

with this code from

a security point of

view?

File Uploads

• Moving the file to the right location
• Never, ever trust user input of any kind.

• What if the user somehow changed the

original file name to be “..\index.php”?

• Several solutions:
• Generate your own file name

• Sanitize the existing name somehow

12

File Uploads

• Sanitizing the existing file name

13

function sanitizeFileName($str) {

 // get rid of consecutive dots

 $str = preg_replace('/\.\.+/', '.', $str);

 // get rid of trailing dots

 $str = preg_replace('/\.+$/', '', $str);

 // get rid of leading dots

 $str = preg_replace('/^\.+/', '', $str);

 // get rid of other nasty characters

 return preg_replace('/[^0-9a-zA-Z_\.-]/', '_', $str);

}

File Uploads

• Sanitizing the existing file name

14

function sanitizeFileName($str) {

 // get rid of consecutive dots

 $str = preg_replace('/\.\.+/', '.', $str);

 // get rid of trailing dots

 $str = preg_replace('/\.+$/', '', $str);

 // get rid of leading dots

 $str = preg_replace('/^\.+/', '', $str);

 // get rid of other nasty characters

 return preg_replace('/[^0-9a-zA-Z_\.-]/', '_', $str);

}
Even if you choose to generate

your own file name, but yet

display this one to the user, you

should sanitize. Avoids injection.

File Uploads

• Generating a new file name

15

function generateName($dir) {

 do {

 $name = uniqid('upload');

 } while (is_file($dir . DIRECTORY_SEPARATOR . $name));

 return $name;

}

File Uploads

• Generating a new file name

16

function generateName($dir) {

 do {

 $name = uniqid('upload');

 } while (is_file($dir . DIRECTORY_SEPARATOR . $name));

 return $name;

}

This is the prefix string

prepended onto the 13 character

hex identifier returned by uniqid.

Really useful when multiple

servers could be generating

unique IDs concurrently.

File Uploads

• Don’t we likely want to store file

references in the database somewhere?
• Two approaches:

• Store file metadata in the DB, file contents on disk

• Store metadata and contents in the DB

17

File Uploads

• Don’t we likely want to store file

references in the database somewhere?
• Two approaches:

• Store file metadata in the DB, file contents on disk

• Store metadata and contents in the DB

18

• Advantages: smaller DB, more

easily backed up

• Disadvantages: Can “orphan”

files if rows are deleted, but

not the disk files (cascading

deletes).

File Uploads

• Don’t we likely want to store file

references in the database somewhere?
• Two approaches:

• Store file metadata in the DB, file contents on disk

• Store metadata and contents in the DB

19

File contents become BLOBs

• Advantages: No orphaned files

• Disadvantages: Large,

unwieldy databases; ETL is

more difficult.

File Uploads

• Don’t we likely want to store file

references in the database somewhere?
• Two approaches:

• Store file metadata in the DB, file contents on disk

• Store metadata and contents in the DB

20

We will choose option 1. Would

need to periodically clean the

uploads directory to get rid of

orphans.

File Uploads

• Let’s create a class to encapsulate this.

21

class UploadDir {

 private $dir;

 function __construct($dir = 'uploads') {

 $this -> dir = getcwd() . DIRECTORY_SEPARATOR . $dir;

 if (!is_dir($this -> dir)) {

 mkdir($this -> dir);

 }

 }

 private static function sanitizeFileName($str) {

 $str = preg_replace('/\.\.+/', '.', $str);

 $str = preg_replace('/\.+$/', '', $str);

 $str = preg_replace('/^\.+/', '', $str);

 return preg_replace('/[^0-9a-zA-Z_\.-]/', '_', $str);

 }

File Uploads

• Let’s create a class to encapsulate this.

22

 private function generateName() {

 do {

 $name = uniqid('upload');

 } while (is_file($this->dir . DIRECTORY_SEPARATOR .

 $name));

 return $name;

 }

 public function getAllUploads() {

 $result = array();

 foreach ($_FILES as $key => $meta) {

 $result[] = $this -> getUpload($key);

 }

 return $result;

 }

File Uploads

• Let’s create a class to encapsulate this.

23

 public function getUpload($key) {

 $file = null;

 if (isset($_FILES[$key])) {

 $tmp_name = $_FILES[$key]['tmp_name'];

 $nameOnDisk = $this -> generateName();

 $path = $this -> dir . DIRECTORY_SEPARATOR .

 $nameOnDisk;

 $success = move_uploaded_file($tmp_name, $path);

 if (!$success) {

 throw new Exception("Problem with file.");

 }

 // ...continued...

File Uploads

• Let’s create a class to encapsulate this.

24

 public function getUpload($key) {

 // ...continued...

 $params = array(

 'dir' => $this->dir,

 'nameOnDisk' => $nameOnDisk,

 'origName' => self::sanitizeFileName(

 $_FILES[$key]['name']),

 'type' => $_FILES[$key]['type'],

 'size' => $_FILES[$key]['size']);

 $file = new File($params);

 }

 return $file;

 }

} // end class UploadDir

File Uploads

• Using UploadDir

25

$dir = new UploadDir('files');

$files = $dir -> getAllUploads();

foreach ($files as $file) {

 $file -> insert();

}

Looks like a File

object subclasses

Model.

File Uploads

• DDL for files table

26

CREATE TABLE file (

 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

 dir VARCHAR(150) NOT NULL,

 origName VARCHAR(50) NOT NULL,

 nameOnDisk VARCHAR(50) NOT NULL,

 type VARCHAR(50) NOT NULL,

 size INTEGER NOT NULL,

 todoId INTEGER NOT NULL,

 FOREIGN KEY(todoId) REFERENCES todo(id) ON DELETE CASCADE

)

File Uploads

• DDL for files table

27

CREATE TABLE file (

 id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,

 dir VARCHAR(150) NOT NULL,

 origName VARCHAR(50) NOT NULL,

 nameOnDisk VARCHAR(50) NOT NULL,

 type VARCHAR(50) NOT NULL,

 size INTEGER NOT NULL,

 todoId INTEGER NOT NULL,

 FOREIGN KEY(todoId) REFERENCES todo(id) ON DELETE CASCADE

)

Context is a one-to-many

relationship with a “ToDo”

object. Your schema may

vary.

File Uploads

• Goal: attach files to ToDo

28

File Uploads

• Lib/File.inc class

29

class File extends Model {

 private $dir;

 private $origName;

 private $nameOnDisk;

 private $type;

 private $size;

 private $todoId;

File Uploads

• Lib/File.inc class

30

class File extends Model {

 public function __construct($fields) {

 parent::__construct($fields);

 $this -> setDir(safeParam($fields, 'dir'));

 $this -> setOrigName(safeParam($fields, 'origName'));

 $this -> setNameOnDisk(safeParam($fields,

 'nameOnDisk'));

 $this -> setType(safeParam($fields, 'type'));

 $this -> setSize(safeParam($fields, 'size'));

 $this -> setTodoId(safeParam($fields, 'todoId'));

 }

File Uploads

• Lib/File.inc class

31

class File extends Model {

 public function fullPath() {

 return $this -> dir . DIRECTORY_SEPARATOR .

 $this -> nameOnDisk;

 }

 private function removeFromDisk() {

 $path = $this -> fullPath();

 if (is_file($path)) {

 unlink($path);

 }

 }

File Uploads

• Lib/File.inc class

32

class File extends Model {

 private function moveOnDisk($to) {

 $old = $this -> fullPath();

 $new = $this -> dir . DIRECTORY_SEPARATOR . $to;

 if (is_file($old)) {

 rename($old, $new);

 }

 $this -> nameOnDisk = $to;

 return $this;

 }

File Uploads

• Lib/File.inc class

33

class File extends Model {

 static function findById($id) {

 $db = Db::getDb();

 $st = $db -> prepare(

 'SELECT * FROM file WHERE id = :id');

 $st -> bindParam(':id', $id);

 $st -> execute();

 $row = $st -> fetch(PDO::FETCH_ASSOC);

 return new File($row);

 }

findByTodoId

would be

similar.

File Uploads

• Lib/File.inc class

34

class File extends Model {

 function delete() {

 $db = Db::getDb();

 $statement = $db -> prepare(

 "DELETE FROM file WHERE id = :id");

 $statement -> bindParam(':id', $this -> id);

 $statement -> execute();

 $this->removeFromDisk();

 }

}

insert and update

are fairly standard.

File Uploads

• controllers/file.inc
• Need to handle create, delete, download and

view capabilities

35

File Uploads

• controllers/file.inc

36

// uploading a file

function post_add($params) {

 Authenticator::instance() -> ensure('edit_todo');

 $todoId = safeParam($_REQUEST, 'todoId', false);

 $todo = Todo::findById($todoId);

 if (!$todo) {

 die("No todo with that ID found");

 }

 $dir = new UploadDir();

 $file = $dir -> getUpload('file');

 $file -> setTodoId($todo -> getId());

 $file -> insert();

 redirectRelative("todo/view/{$todo->getId()}");

}

File Uploads

• controllers/file.inc

37

// deleting a file

function get_delete($params) {

 Authenticator::instance() -> ensure('edit_todo');

 $fileId = safeParam($params, 0);

 $todoId = safeParam($params, 1);

 $file = File::findById($fileId);

 $file -> delete();

 redirectRelative("todo/view/$todoId");

}

Needs a second

parameter of what

Todo to redirect to

after deleting.

File Uploads

• controllers/file.inc

38

// download a file

function get_download($params) {

 Authenticator::instance() -> ensure('view_todo');

 $fileId = safeParam($params, 0);

 $file = File::findById($fileId);

 header('Content-Description: File Transfer');

 header('Content-Type: ' . $file -> getType());

 header('Content-Disposition: attachment; filename=' .

 $file -> getOrigName());

 header('Content-Transfer-Encoding: binary');

 // ...continued...

app/file/download/1 will

trigger a download

File Uploads

• controllers/file.inc

39

 // ...continued...

 header('Cache-Control: must-revalidate');

 header('Pragma: public');

 header('Content-Length: ' . $file -> getSize());

 ob_clean();

 flush();

 readfile($file -> fullPath());

 exit;

}

File Uploads

• controllers/file.inc

40

// view a file (inline, not "download")

function get_view($params) {

 Authenticator::instance() -> ensure('view_todo');

 $file = File::findById(safeParam($params, 0));

 header('Last-Modified: ' . date('r'));

 header('Accept-Ranges: bytes');

 header('Content-Length: ' . $file -> getSize());

 header('Content-Type: ' . $file -> getType());

 header('Content-Disposition: inline; filename=' .

 $file -> getOrigName());

 ob_clean();

 flush();

 readfile($file -> fullPath());

 exit;

}

app/file/view/1 is the

URL for viewing inline.

File Uploads

• Let’s say a user uploads a profile picture
• Is there any security implication for

permitting that to be viewed?

41

File Uploads

• Let’s say a user uploads a profile picture
• Is there any security implication for permitting

that to be viewed?

42

Absolutely! http://news.cnet.com/JPEG-exploit-could-beat-

antivirus-software/2100-7349_3-5388633.html

http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html
http://news.cnet.com/JPEG-exploit-could-beat-antivirus-software/2100-7349_3-5388633.html

File Uploads

• Let’s say a user uploads a profile picture
• Is there any security implication for

permitting that to be viewed?
• Browsers have security vulnerabilities.

• JPEG, GIF, PNG rendering libraries have had

vulnerabilities.

• A carefully crafted picture, sent back to the

browser, could contain malware.

• Solution: Never, ever trust user input

43

File Uploads

• Let’s say a user uploads a profile picture
• Never, ever trust user input of any kind.

• Resample the image using PHP functions (pages

760-761 of your textbook).

• Store and transmit the resampled image.

44

Show me the code!

• Full source code for the upload-enabled

“Todo” application is found in the standard

location:

http://cs.franklin.edu/~sharkesc/webd236/

45

http://cs.franklin.edu/~whittakt/WEBD236/

Other file-related functions

• A list of functions worth exploring
• is_file($path): returns true if $path is a file

• is_dir($path): returns true if $path points to a dir

• file_exists($path): is_file($path) || is_dir($path)

• getcwd(): current working directory

• scandir($path): returns an array of files in $path

46

Other file-related functions

•A list of functions worth exploring
file($name): returns an array of file contents, one

entry per line.

file_get_contents($name): returns one big string

containing all data from the file.

read_file($name): dumps the entire contents of

the file to the output stream.

file_put_contents($name, $data): writes the data to

the file (overwriting by default).

47

Other file-related functions

• A list of functions worth exploring
• fopen($path, $mode): opens a file, returning a

“handle.”

• feof($handle): returns true if at end of file.

• fclose($handle): closes a file handle.

• fread($handle, $length): reads bytes from the

file.

• fwrite($handle, $data): writes bytes to the file.

• fgets($handle): read one line from the file.

48

Other file-related functions

• A list of functions worth exploring
• copy($old, $new): copies a file

• rename($old, $new): renames a file

• unlink($name): deletes a file

• fgetcsv($handle): reads in one line of CSV,

returning an array of the data. Useful for

importing data. First line has “keys,” usually.

• fputcsv($handle, $array): writes an array to file

as CSV. Useful for exporting data.

49

Not covered today

• Image manipulation (pgs 756-763)

50

Application Frameworks

• You may have noticed

– Writing the same kind of code repeatedly
• Models: getters, setters, findByX, insert, delete,

update.

• Controllers: retrieve parameters, validate, check
permissions, update model, render a page or
redirect

• Views: using the same header/footer, printing
variables

– We have built a small application framework
that takes some of the drudgery out

51

Application Frameworks

• Application Frameworks

– Provide the infrastructure for building apps, so

you can concentrate on the problem

• Routing/dispatching

• Flexible MVC

• Caching

• Localization

• Validation/sanitization

• Security

52

All designed to work

together, the foundations

for any app. A production

app framework provides

much more.

Application Frameworks

• “Convention over configuration”

– Frameworks impose a way of doing things

• Ruby/Rails vs. Java/JEE

– Examples:

• Model class names are singular and camel case

(e.g. BlogPost), but the table in the database is

plural and underscored (e.g. blog_posts).

• Routes like /app/user/edit/5 get mapped to a class

called UserController, calling the method edit($id),

and 5 becomes the value of $id.

53

Many more features

• Additional features:

– ACL based authorization

– Object relational mapping of one-to-many

(hasMany) and many-to-many

(hasAndBelongsToMany) relationships

– Code generation from an existing DB

– Email components

– Pagination, cookies, sessions, security, etc.

54

Learning curve

• Learning a framework is hard

– Resources

• Online books and tutorials:

• Free ebooks:

– The payoff in development time is huge.

55

Other frameworks

• PHP has many frameworks

– E.g. Laravel, Cake, Yii, CodeIgniter, Zend,

Symfony

– Each has a different philosophy (monolithic

vs. plugin-based) and provides different

features.

• And several templating languages

– E.g. Smarty, Dwoo, Rain

56

Lab 4

• You will be again modifying the forum

application
• Add Mini-markdown to questions and answers

• Add RBAC (Users, Posters, Moderators,

Administrators)

• Attach files to questions

• Bonus: send “forgot my password” email

57

Upcoming Deadlines

• Readings for next week
• Chapter 24 in PHP and MySQL

• Assignments
 Lab 4 due end of week 12

 Final due end of week 12

58

General Q & A

• Questions?

• Comments?

• Concerns?

