

IDG Network: Login Register

 Computerworld

> Return to story

QuickStudy: System Development Life
Cycle

Quickstudy by Russell Kay

 MAY 14, 2002
(COMPUTERWORLD) - Once
upon a time, software
development consisted of a
programmer writing code to
solve a problem or automate a
procedure. Nowadays, systems
are so big and complex that
teams of architects, analysts,
programmers, testers and
users must work together to
create the millions of lines of
custom-written code that drive
our enterprises.

To manage this, a number of system development life cycle (SDLC) models have
been created: waterfall, fountain, spiral, build and fix, rapid prototyping,
incremental, and synchronize and stabilize.

The oldest of these, and the best known, is the waterfall: a sequence of stages in
which the output of each stage becomes the input for the next. These stages can
be characterized and divided up in different ways, including the following:

 Project planning, feasibility study: Establishes a high-level view of the
intended project and determines its goals.

 Systems analysis, requirements definition: Refines project goals into
defined functions and operation of the intended application. Analyzes end-

Page 1 of 3System Development Life Cycle - Computerworld

4/28/2006http://www.computerworld.com/printthis/2002/0,4814,71151,00.html

http://www.computerworld.com/printthis/2002/0,4814,71151,00.html

user information needs.

 Systems design: Describes desired features and operations in detail,
including screen layouts, business rules, process diagrams, pseudocode and
other documentation.

 Implementation: The real code is written here.

 Integration and testing: Brings all the pieces together into a special testing
environment, then checks for errors, bugs and interoperability.

 Acceptance, installation, deployment: The final stage of initial
development, where the software is put into production and runs actual
business.

 Maintenance: What happens during the rest of the software's life: changes,
correction, additions, moves to a different computing platform and more. This,
the least glamorous and perhaps most important step of all, goes on
seemingly forever.

But It Doesn't Work!

The waterfall model is well understood, but it's not as useful as it once was. In a
1991 Information Center Quarterly article, Larry Runge says that SDLC "works very
well when we are automating the activities of clerks and accountants. It doesn't
work nearly as well, if at all, when building systems for knowledge workers --
people at help desks, experts trying to solve problems, or executives trying to lead
their company into the Fortune 100."

Another problem is that the waterfall model assumes that the only role for users is
in specifying requirements, and that all requirements can be specified in advance.
Unfortunately, requirements grow and change throughout the process and beyond,
calling for considerable feedback and iterative consultation. Thus many other
SDLC models have been developed.

The fountain model recognizes that although some activities can't start before
others -- such as you need a design before you can start coding -- there's a
considerable overlap of activities throughout the development cycle.

The spiral model emphasizes the need to go back and reiterate earlier stages a
number of times as the project progresses. It's actually a series of short waterfall
cycles, each producing an early prototype representing a part of the entire project.
This approach helps demonstrate a proof of concept early in the cycle, and it more
accurately reflects the disorderly, even chaotic evolution of technology.

Build and fix is the crudest of the methods. Write some code, then keep modifying
it until the customer is happy. Without planning, this is very open-ended and can by
risky.

Page 2 of 3System Development Life Cycle - Computerworld

4/28/2006http://www.computerworld.com/printthis/2002/0,4814,71151,00.html

http://www.computerworld.com/printthis/2002/0,4814,71151,00.html

In the rapid prototyping (sometimes called rapid application development) model,
initial emphasis is on creating a prototype that looks and acts like the desired
product in order to test its usefulness. The prototype is an essential part of the
requirements determination phase, and may be created using tools different from
those used for the final product. Once the prototype is approved, it is discarded and
the "real" software is written.

The incremental model divides the product into builds, where sections of the
project are created and tested separately. This approach will likely find errors in
user requirements quickly, since user feedback is solicited for each stage and
because code is tested sooner after it's written.

Big Time, Real Time

The synchronize and stabilize method combines the advantages of the spiral
model with technology for overseeing and managing source code. This method
allows many teams to work efficiently in parallel. This approach was defined by
David Yoffie of Harvard University and Michael Cusumano of MIT. They studied
how Microsoft Corp. developed Internet Explorer and Netscape Communications
Corp. developed Communicator, finding common threads in the ways the two
companies worked. For example, both companies did a nightly compilation (called
a build) of the entire project, bringing together all the current components. They
established release dates and expended considerable effort to stabilize the code
before it was released. The companies did an alpha release for internal testing;
one or more beta releases (usually feature-complete) for wider testing outside the
company, and finally a release candidate leading to a gold master, which was
released to manufacturing. At some point before each release, specifications would
be frozen and the remaining time spent on fixing bugs.

Both Microsoft and Netscape managed millions of lines of code as specifications
changed and evolved over time. Design reviews and strategy sessions were
frequent, and everything was documented. Both companies built contingency time
into their schedules, and when release deadlines got close, both chose to scale
back product features rather than let milestone dates slip.

Copyright © 2005 Computerworld Inc. All rights reserved. Reproduction in whole or in part in any form or medium without express written permission of
Computerworld Inc. is prohibited. Computerworld and Computerworld.com and the respective logos are trademarks of International Data Group Inc.

Page 3 of 3System Development Life Cycle - Computerworld

4/28/2006http://www.computerworld.com/printthis/2002/0,4814,71151,00.html

http://www.computerworld.com/printthis/2002/0,4814,71151,00.html

