COMP 204 – Principles of Computer Networks

Week 3

© 2011 Alex Elbert, Todd Whittaker

Agenda

- Review this week's learning outcomes
- Presentation of this week's material
- Introduce homework problems
- Q & A session

This Week's Outcomes

- Describe IPv4 in terms of addressing, encapsulation, and routing.
- Describe the interrelationship between IP and both TCP and UDP.
- Simulate routing between two hosts on diverse networks.

Application

Transport

Internet

Network Access

FRANKLIN P

FRANK

Review – Application and Transport

Network Access

- TCP "connection oriented"
- Header differences
- Handshaking in TCP

UNIVER

IP – Virtual Network

 IP allows for interconnection of different hosts on the network. In order for communication to take place, a stream of data is divided into packets that travels along a certain route from the source IP address to destination IP address.

FRANK

- Addressing
 - Specifies the rules for addressing on IP, broadcasts, multicasts...
- Encapsulation
 - Specifies how the information about source and destination suppose to fit in the IP packet
- Routing
 - Specifies how the packets will flow from the source to the destination
- Decapsulation
 - Specifies how the encapsulated data suppose to be removed

IP – Features

- Connectionless
- Best effort (unreliable)
- Media independent

IP – Connectionless

- Does not establish connection before sending data
- Each packet is independent of the others
- Packets from the same "virtual circuit" can take different paths

IP – Best Effort Delivery

- No confirmation of delivery of the packets
- Packet may be lost, duplicated, delayed or delivered out of sequence
- There is nothing in IP to prevent or handle this
- Reliability can be achieved with TCP
- Absence of reliability makes IP very efficient. How?

IP – Media Independence

- Does not care about underlying medium, can be
 - Ethernet, Fiber, wireless, etc.
- Handles Fragmentation that arises if different medium across the packet route has different Maximum Transfer Unit (MTU)

IP – Packet Fragmentation

- Maximum Transfer Unit (MTU) on Layer 2:
 - Token Ring (16 Mbps) 17,914 bytes
 - Token Ring (4 Mbps) 4,464 bytes 4,352 bytes
 - FDDI
 - Ethernet 1,500 bytes
 - Some as small as 128 bytes
- Choose least common denominator?
 - Unnecessarily inefficient
 - Will result in very small packets on networks that support large **MTUs**

IP – Packet Fragmentation

- IP protocol:
 - Hides underlying hardware details
 - Divides large packets into smaller pieces (fragments)
 - Reassembles the fragments at destination

IP – Packet Fragmentation

• Each fragment contains header with information that is similar to the original packet except for the few fields

IP – Packet Fragmentation

- Reassembled at final destination
- Prevents packet from being fragmented and reassembled multiple times
- May cause inefficiency after fragmented
- Fragments may be lost
 - target uses reassembly timer

IP – Datagram

- Basic unit of transfer is a datagram (you will often see it referred to as "packet")
- Consists of header area and data area

IP – Datagram Structure

FRANK

<--- byte 1 - - -> <--- byte 2 - - -> <--- byte 3 - - -> <--- byte 4 - - ->

Version	Hdr Len	Service Type		Packet Total Length	
Identification		Flags	Fragment Offset		
Time to Live		Protocol	Header Checksum		Checksum
		Source IF	P Addre	SS	
		Destinatior	n IP Ado	lress	
IP Options (if any)			I		Padding
		Da	ata		
			••		
					FRANKLIN
					UNIVERSITY I

IP – Options

IP – Summary

- Used to route datagrams from one host to another
- Handles fragmentation over diverse Layer 2 networks
- Best-effort delivery system not guaranteed
- Error reporting via ICMP (Internet Control Message Protocol)
- Ability to add options

Routing – IP Datagrams

- Routing
 - Routing chooses path over which the packet will travel
 - Store and forward packet
 - Can occur within a network
 - Can occur on the end host or the router

FRANK

Routing – Direct Delivery

- Direct delivery
 - Datagram goes from one machine across physical network directly to another
 - Both machines must be physically attached to same network
 - Always final step of a datagram route (may be from a router to target)

Routing – Direct Delivery

- No routers involved
- Source sends packet to target
 - Encapsulates packet in physical frame
 - Maps target IP address to physical address via ARP
 - Transmits frame to target over Layer 2 network, such as Ethernet

Routing – Direct Delivery

• How does source know if target is on same physical address?

- Compares own network id with target network id

Routing – Indirect Delivery

- Indirect Delivery
 - Target is not on same network as source
 - Datagram must be passed to a router for forwarding
 - Source must determine an acceptable router for datagram to reach the target
 - Each router selects next router until target is reached or direct delivery can be used

Routing – Tables

- Routing usually involves special routing table
- Both hosts and routers can have routing tables
- Table cannot contain every host in world
 - too big
 - could not keep current

Routing – Next-Hop

- Better solution next-hop routing:
 - Table only points to next router
 - Does not know complete route
 - Contains pairs (N,R)
 - N network ID
 - R router IP address (only routers that are directly accessible to the host)
 - Stores the information that is needed to do the next hop – forward the datagram to the next router on the path to the target

- Most routing software allows per-host routes
- Allows administrator more control
- Allows testing specific routers
- Can be used for security purposes

Routing – Default Routes

- If target network is not in routing table send to default router
- Using previous example
 - Network 40 would go through default router D (20.0.0.8)
- Works well if only one router attached to outside world

Routing –Algorithm

- RouteDatagram(Datagram, Routing Table)
 - 1. Extract target IP address, D
 - 2. Calculate network prefix, N from D
 - 3. If delivering directly, send over local network
 - 4. Else if host specific entry, send to next-hop
 - 5. Else if network prefix entry, send to next-hop
 - 6. Else if default route entry, send to next-hop
 - 7. Else declare routing error

Routing – Routing with IP Addresses

- Routing table contains IP address
- Must be translated to hardware address before sending datagram
- All routers in table must be local
- Why not use hardware address in table?

Routing – Routing with IP Addresses

- Why use IP addresses in routing table?
 - IP addresses easier for administrator to manage
 - IP layer hides hardware details
 - hardware address differ in size and form
 - software is layered; easier to test and modify

Routing – Receiving Datagrams

- Router
 - Checks IP address to see if datagram has reached final destination (router management datagrams)
 - Decrements Time To Live
 - Discard datagram if zero
 - Does not otherwise change datagram
 - Forwards datagram to next hop

Routing – Receiving Datagrams

- Hosts
 - Checks IP address to see if datagram has reached final destination
 - Passes datagram to appropriate layer above
 - Discards if not final destination
 - Should not forward mis-delivered datagrams

Routing – Routing Tables

- How are they established?
 - Routers share information with each other
- Examples:
 - IP based: OSPF, IGRP, EIGRP
 - UPD based: RIP
 - TCP based: BGP

Routing – Routing Strategies

- Static
 - routes computed once and never change
- Dynamic
 - routes computed initially but change as network conditions change

Routing – Routing utilities

- traceroute (tracert on Windows)
 - Traces route to target host
 - Sets Time To Live to one
 - receives error and displays information
 - increase TTL and tries again

Routing – tracert example

FRANK

acing route	to any-fp.wal.b	.yahoo.com [67.195.160.76]	
1 1 ms	1 ms 3 m	<pre>s 10.1.22.2</pre>	
2 3 ms	1 ms 3 m	s 64.129.112.1	
3 2 ms	1 ms 1 m	s 66-194-130-169.static.twtelecom.net [66.194.130.169]	
4 13 ms	13 ms 14 m	s ash1-pr2-xe-1-3-0-0.us.twtelecom.net [66.192.244.70]	
5 14 ms	27 ms 38 m	s ae-6.pat1.dce.yahoo.com [216.115.102.172]	
6 13 ms	16 ms 16 m	s xe-7-0-0.msr1.ac2.yahoo.com [216.115.108.125]	
7 15 ms	14 ms 16 m	s xe-4-2-0.clr4.ac4.yahoo.com [76.13.0.103]	
8 22 ms	20 ms 16 m	s ge-0-0-0.clr2.ac4.yahoo.com [76.13.0.29]	
9 15 ms	15 ms 16 m	s ir1.fp.vip.ac4.yahoo.com [67.195.160.76]	
ace complet	e.	ttakt>_	

Routing – Routing utilities

- netstat
 - shows network status
 - "-r" display routing table
- route
 - manipulates the routing tables

This Week's Outcomes

- Describe IPv4 in terms of addressing, encapsulation, and routing.
- Describe the interrelationship between IP and both TCP and UDP.
- Simulate routing between two hosts on diverse networks.

Self Quiz

- What layer is IP in the OSI model?
- What does IP "connect"
- How do packets move on the same network?
- How do packets move between networks?
- At what layer of OSI do routers operate?
- What is the algorithm for routing?

Self Quiz

- What does a router do if it receives a packet and there is no route for it?
- What happens if a packet (layer 3) is too big to fit in a frame (layer 2)?
- What does a router do with a packet destined for a host on directly connected network? An indirectly connected network? A network that it knows nothing about?

