COMP 204 – Principles of Computer Networks

Week 4

© 2011 Alex Elbert, Todd Whittaker

Agenda

- Review this week's learning outcomes
- Presentation of this week's material
- Introduce homework problems
- Q & A session

This Week's Outcomes

- Convert binary to decimal and decimal to binary to understand subnet masking.
- Apply bitwise operations to construct sub- and super-nets.
- Specify a strategy to dividing large networks into smaller versions (CIDR).
- Distinguish between public, private, and multicast address spaces (RFC1918)

Application

Transport

Internet

Network Access

Review – Routing

Port	IP address / VLSM				
А	192.168.0.0/31		Must be on th same network		
В	192.168.0.1/31	5	each other		
С	192.168.0.2/31		Must be on th same network		
D	192.168.0.3/31	5	each other		
E	192.168.0.4/31		Must be on th same network		
F	192.168.0.5/31	5	each other		
G	172.16.56.254		Must be on th same network		
Н	172.16.57.254		hosts to whic		
		(urrectly delive		

ne k as

ne k as

ne k as the h it rs.

Review – Routing

• Router 1 routing table

Port	Destination Network	Gateway	
С	172.16.57.0/24	192.168.0.3	
А	172.16.57.0/24	192.168.0.1	Routing "metric," decides between
G	172.16.56.0/24	172.16.56.254	these, lower
А	0.0.0/0	192.168.0.1	favored.
С	0.0.0/0	192.168.0.3	\int
	Could say "direct delivery," instead.		FRANKLIN
			UNIVERSITY

Review – Routing

• Router 2 routing table

Review – Routing

• Router 3 routing table

Port	Destination Network	Gateway	
D	172.16.56.0/24	192.168.0.2	
F	172.16.56.0/24	192.168.0.4	Routing "metric," decides between
Н	172.16.57.0/24	172.16.57.254	these, lower
F	0.0.0/0	192.168.0.4	favored.
D	0.0.0/0	192.168.0.2	\int
	Could say "direct delivery," instead.		FRANKLIN
			UNIVERSITY

Network Addressing

- Recall routing:
 - Look at the network portion of the IP address.
 - If the network is locally connected (i.e. directly adjacent to the router), then deliver directly to the host.

FRANK

- If there is a routing entry for the network, forward to the next hop entry in the routing table
- Otherwise, deliver to the default next hop.

Network Addressing

- Recall routing:
 - Look at the network portion of the IP address.
 - If the network is locally connected (i.e. directly adjacent to the router), the eliver directly to the host.
 - If there is a ro htry for the network, forward to

What is the "network portion" of the IP address? And just what the heck are these /24 and /31 notations anyhow? outing table lefault next hop.

Network & Host Parts

ω	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	60	80	07	90	о 0	04	03	02	01	00
	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	Ţ	0	0		Annu	1	0	1
	192						168						2								157										

- Break the address up into "octets" (groupings of 8 bits, or 1 byte).
- Some portion of this string of binary numbers will be the "network" identifier and some portion will be the "host" identifier within the network.

Network & Host Parts

- The /XX, notation is called VLSM or CIDR
 - VLSM: variable length subnet mask
 - CIDR: classless inter-domain routing
- Sometimes the network/host is written using a *netmask*.
 - A netmask is a pattern of all 1's followed by all zeros. The netmask is "anded" with an IP address to determine the network/host division

Network & Host Parts

 Ex: "/24" is equivalent to a netmask of 255.255.255.0. Why?

3 ²	30	29	200	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	60	80	07	90	805	04	03	02	00
	1	1	1	1	1	1	1	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	00
		2	2	5!	5					2	2	5!	5					2) [55	5						6)		

• The IP address of a host is ANDed with the netmask to strip off the host portion and leave only the network portion.

Network & Host Parts

• What is the netmask equivalent for /20?

Network & Host Parts

- Classful addresses
 - Older style addressing schema whereall nem asks came in octets too.
 - Class A: 0.0.0.0/8 through 27.2.5.253.255/8
 128 networks of 16, 7216 osts
 - Class B: 12a 0.a 0/26 mrough 191.255.255.255/16
 - 16,334 networks of 65,536 hosts
 - acc: 192.0.0.0/24 through 239.255.255.255/24
 - 2,097,152 networks of 256 hosts

Reserved addresses

- Already mentioned two reserved host addresses on each network:
 - Host part all 0s: network address
 - Host part all 1s: directed broadcast address
- IP 255.255.255.255 is *limited* broadcast address. Used to get an IP address via DHCP.
- All broadcast packets have TTL set to 1 (nonroutable)

Reserved addresses

- Class D: Multicast addresses
 - 224.0.0.0 through 239.255.255.255
- Class E: Reserved
 - 240.0.0.0 through 255.255.255.255
- Loopback
 - 127.0.0.0/8 (127.0.0.0 through 127.255.255.255) always refers to "localhost." Allows apps on the same machine to communicate w/o routing.

Private IP Addresses

- Not enough IP addresses to cover all the devices connected to the Internet.
 - Private IP address ranges are reserved for internal networks (usually hidden behind NAT)
 - 10.0.0.0/8 (10.0.0.0 through 10.255.255.255)
 - 172.16.0.0/12 (172.16.0.0 to 172.31.255.255)
 - 192.168.0.0/16 (192.168.0.0 to 192.168.255.255)
 - Defined by RFC 1918

Dividing Address Spaces

- Tier 1, 2 and 3 ISPs
 - Tier 1 ISPs own large sections of the IP address range, which they "sublet" to Tier 2 ISPs using VLSM/CIDR (IANA assigns these and runs root DNS servers)
 - Tier 2 ISPs then section off chunks to Tier 3 ISPs (also using VLSM/CIDR)
 - Tier 3 ISPs often assign just a single IP address to an organization. These organizations hide RFC1919 networks behind NAT.

RFC 3021

 Using 31-Bit Prefixes on IPv4 Point-to-Point Links

It turns out that the following is a really common router layout:

RFC 3021

- Using 31-Bit Prefixes on IPv4 Point-to-Point Links
 - But this wastes half the IP addresses for router meshes in "reserved" addresses.
 - RFC 3021 says that for point-to-point links, using a /31 VLSM is okay. So we get those back.

- Given a limited range of contiguous IP addresses, how do you break it up into separate networks with different numbers of hosts?
 - Identify the number of needed networks
 - Count the number of hosts on each (leaving some room to grow)
 - Sort the list descending by host count
 - Begin dividing up the address space.

How to subnet

- Ex: need 5 networks of 12, 55, 4, 62, and 100 hosts each.
 - 100: next power of 2 is 128. Has room.
 - 62: next power of 2 is 64. Needs room.
 - 55: next power of 2 is 64. Has room.
 - 12: next power of 2 is 16. Needs room.
 - -4: is a power of 2. Needs room.

- Ex: need 5 networks of 12, 55, 4, 62, and 100 hosts each.
 - 128 hosts, needs 7 bits
 - 128 hosts, needs 7 bits
 - 64 hosts, needs 6 bits
 - 32 hosts, needs 5 bits
 - 16 hosts, needs 4 bits

How to subnet

- Ex: need 5 networks of 12, 55, 4, 62, and 100 hosts each.
 - 128 hosts, needs 7 bits
 - 128 hosts, needs 7 bits
 - 64 hosts, needs 6 bits
 - 32 hosts, needs 5 bits
 - 16 hosts, needs 4 bits

Divide up the 10.0.0/8 network efficiently here.

- Third network starts after the second!
 - 64 hosts, needs 6 bits
 - Network address 10.0.1.0
 - Broadcast address 10.0.1.63
 - Therefore 10.0.1.0/26
 - 62 hosts (10.0.1.1 through 10.0.1.62)

How to subnet

- Fourth network starts after the third!
 - 32 hosts, needs 5 bits
 - Network address 10.0.1.64
 - Broadcast address 10.0.1.95
 - Therefore 10.0.1.64/27
 - 30 hosts (10.0.1.65 through 10.0.1.94)

With 5 bits needed, that's a /27 VLSM

With 6 bits needed,

that's a /26 VLSM

- Fifth network starts after the fourth!
 - 16 hosts, needs 4 bits
 - Network address 10.0.1.96
 - Broadcast address 10.0.1.111
 - Therefore 10.0.1.96/28
 - 14 hosts (10.0.1.97 through 10.0.1.110)

With 4 bits needed, that's a /28 VLSM

FRAN

How to subnet

• Nice table representation

Orig Sz	Subnet	Net Addr	Bcast Addr	First host	Last host
100	10.0.0/25	10.0.0.0	10.0.0.127	10.0.0.1	10.0.0.126
62	10.0.0.128/25	10.0.0.128	10.0.0.255	10.0.0.129	10.0.0.254
55	10.0.1.0/26	10.0.1.0	10.0.1.63	10.0.1.1	10.0.1.62
12	10.0.1.64/27	10.0.1.64	10.0.1.95	10.0.1.65	10.0.1.94
4	10.0.1.96/28	10.0.1.96	10.0.1.111	10.0.1.97	10.0.1.110

• Nice table representation

Orig Sz	Subnet	Net Addr	Bcast Addr	First host	Last host
100	10.0.0/25	10.0.0.0	10.0.0.127	10.0.0.1	10.0.0.126
62	10.0.0.128/25	10.0.0.128	10.0.0.255	10.0.0.129	10.0.0.254
55	10.0.1.0/26	10.0.1.0	10.0.1.63	10.0.1.1	10.0.1.62
12	10.0.1.64/27	10.0.1.64	10.0.1.95	10.0.1.65	10.0.1.94
4	10.0.1.96/28	10.0.1.96	10.0.1.111	10.0.1.97	10.0.1.110

It's a good bet that a problem like this will be on the exam!

This Week's Outcomes

- Convert binary to decimal and decimal to binary to understand subnet masking.
- Apply bitwise operations to construct sub- and super-nets.
- Specify a strategy to dividing large networks into smaller versions (CIDR).
- Distinguish between public, private, and multicast address spaces (RFC1918)

Self Quiz

- A network admin needs to create a network that supports 16 hosts. What kind of netmask will work here?
- What does RFC1918 specify? What good does it do for network admins?
- Why did IANA move away from classful addresses to classless addresses?

Self Quiz

- A RFC 3021 compliant point-to-point router connection has IP address and VLSM 192.168.12.57/31.
 - Write the *netmask* in dotted decimal
 - What is the IP address and *netmask* of the other end of the connection?

Self Quiz

 A network admin needs to create 4 networks corresponding to 4 different cities. The cities have 35, 22, 19, and 10 hosts respectively. Draw a network diagram with IP address schemas drawn from 192.168.0.0/16 that will support this network with minimal wasted IP addresses.

Due this week

- Homework 3
- Participation 4

Next week

• Chapter 7 and 8 – Link layer and physical layer. How bits get from interface to interface.

• Questions, comments, concerns?

FRANK