COMP 204 - Principles of Computer Networks

Week 4

© 2011 Alex Elbert, Todd Whittaker

Agenda

- Review this week's learning outcomes
- Presentation of this week's material
- Introduce homework problems
- Q \& A session

This Week's Outcomes

- Convert binary to decimal and decimal to binary to understand subnet masking.
- Apply bitwise operations to construct sub- and super-nets.
- Specify a strategy to dividing large networks into smaller versions (CIDR).
- Distinguish between public, private, and multicast address spaces (RFC1918)

Review - Application and Transport

Application
Transport
Internet
Network Access

Review - Application Layer

Application	OSI layers 5, 6, 7. User applications, services, and application layer protocols. "messages" - Ex: browser, httpd, and HTTPD working together. - App message -> app protocol -> transport layer.
Internet	

Review - Transport Layer

Application
Transport
Internet
Network Access (Link)

OSI layer 4. Typical
examples are UDP and TCP. "segments"

- Port - specifies target service/app listening for messages
- UDP - "connectionless"
- TCP - "connection oriented"
- Header differences
- Handshaking in TCP

Review - Internet Layer

Application
Transport
Internet
How messages get from host to host. Layer 3. "packets" - Ex: IP (Internet Protocol) and ICMP (Internet Control Message Protocol)

Review - Routing

Review - Routing

Review - Routing

Review - Routing

Port	IP address / VLSM
A	$192.168 .0 .0 / 31$
B	$192.168 .0 .1 / 31$
C	$192.168 \cdot 0.2 / 31$
D	$192.168 .0 .3 / 31$
E	$192.168 \cdot 0.4 / 31$
F	$192.168 .0 .5 / 31$
G	172.16 .56 .254
H	172.16 .57 .254

Must be on the
same network as
each other
Must be on the
same network as
each other
Must be on the
same network as
each other
Must be on the
same network as the hosts to which it directly delivers.

Review - Routing

- Router 1 routing table

Port Destination Network Gateway

C	$172.16 .57 .0 / 24$	192.168 .0 .3
A	$172.16 .57 .0 / 24$	192.168 .0 .1
G	$172.16 .56 .0 / 24$	172.16 .56 .254
A	$0.0 .0 .0 / 0$	192.168 .0 .1
C	$0.0 .0 .0 / 0$	192.168 .0 .3

Could say "direct delivery," instead.

Review - Routing

- Router 2 routing table

Review - Routing

- Router 3 routing table

Port Destination Network Gateway

D	$172.16 .56 .0 / 24$	192.168 .0 .2
F	$172.16 .56 .0 / 24$	192.168 .0 .4
H	$172.16 .57 .0 / 24$	172.16 .57 .254
F	$0.0 .0 .0 / 0$	192.168 .0 .4
D	$0.0 .0 .0 / 0$	192.168 .0 .2

> Routing "metric," decides between these, lower number is favored.

Could say "direct delivery," instead.

Review - Routing

Chapter 6

- Dividing large networks into smaller networks.
- Assigning IP addresses.

Network Addressing

- Recall routing:

- Look at the network portion of the IP address.
- If the network is locally connected (i.e. directly adjacent to the router), then deliver directly to the host.
- If there is a routing entry for the network, forward to the next hop entry in the routing table
- Otherwise, deliver to the default next hop.

Network Addressing

If a packet with destination 192.168.1.2 arrives here, what is the next hop?

Network Addressing

Network Addressing

Network Addressing

- Recall routing:
- Look at the network portion of the IP address.
- If the network is loo ly connected (i.e. directly adjacent to the router), th eliver directly to the host.
- If there is a ro atry for the network, forward to What is the "network outing table portion" of the IP address? lefault next hop. And just what the heck are these / 24 and / 31 notations anyhow?

Network \& Host Parts

$$
\begin{aligned}
& 11000000101010000000001010011101 \\
& 192168 \quad 2 \quad 157
\end{aligned}
$$

- Break the address up into "octets" (groupings of 8 bits, or 1 byte).
- Some portion of this string of binary numbers will be the "network" identifier and some portion will be the "host" identifier within the network.

Network \& Host Parts

$$
\begin{aligned}
& 11000000101010000000001010011101
\end{aligned}
$$

- It's easy when the separation falls on a 8 -bit boundary (like above). The blue portion is the "network" and the red portion is the "host."
- The above written 192.168.2.157/24, indicating that the most-significant 24 bits are the network and the least significant 8 bits are the host.

Network \& Host Parts

- If the IP address is 192.168.2.157/24, how many hosts can be on this network?

Network \& Host Parts

- If the IP address is 192.168.2.157/24, how many hosts can be on this network?
- Answer: 8 host bits, $2^{8}=256$ (0 through 255)
- Except 2 addresses are reserved. When the host bits are all 0s, it is the "network address" and when the host bits are all 1s, it is the broadcast address.
- So, really, it's 254, numbered 1-254.

Network \& Host Parts

- If the IP address is 192.168.2.157/27, how many hosts can be on this network?

Network \& Host Parts

$$
\begin{aligned}
& 11000000101010000000001010011101
\end{aligned}
$$

- If the IP address is 192.168.2.157/27, how many hosts can be on this network?
- Answer: 5 host bits, $2^{5}-2=30$.
- Numbered 192.168.2.129 through 192.168.2.158.
- 192.168.2.128 is the network address
- 192.168.2.159 is the broadcast address

Network \& Host Parts

- If the IP address is 192.168.2.157/20, how many hosts can be on this network?

Network \& Host Parts

$$
\begin{aligned}
& 11000000101010000000001010011101
\end{aligned}
$$

- If the IP address is 192.168.2.157/20, how many hosts can be on this network?
- Answer: 12 host bits, $2^{12}-2=4094$.
- Numbered 192.168.0.1 through 192.168.15.254.
- 192.168.0.0/20 is the network address
- 192.168.15.255/20 is the broadcast address

Network \& Host Parts

- The /XX, notation is called VLSM or CIDR
- VLSM: variable length subnet mask
- CIDR: classless inter-domain routing
- Sometimes the network/host is written using a netmask.
- A netmask is a pattern of all 1's followed by all zeros. The netmask is "anded" with an IP address to determine the network/host division

Network \& Host Parts

- Ex: "/ 24 " is equivalent to a netmask of 255.255.255.0. Why?

Network \& Host Parts

- Ex: "/ 24 " is equivalent to a netmask of 255.255.255.0. Why?

$$
\begin{aligned}
& 11111111111111111111111100000000 \\
& 255255255 \\
& 0
\end{aligned}
$$

Network \& Host Parts

- Ex: "/24" is equivalent to a netmask of 255.255.255.0. Why?

$$
\begin{aligned}
& \text { Wex } \\
& 11111111111111111111111100000000 \\
& 255 \quad 255 \quad 2550
\end{aligned}
$$

- The IP address of a host is ANDed with the netmask to strip off the host portion and leave only the network portion.

Network \& Host Parts

- What is the netmask equivalent for $/ 20$?

Network \& Host Parts

- What is the netmask equivalent for $/ 20$?

Network \& Host Parts

- Is 192.168.208.5/20 on the same network as 192.168.249.137/20?

Network \& Host Parts

- Is 192.168.208.5/20 on the same network as 192.168.249.137/20?

Network \& Host Parts

- Is 192.168.208.5/20 on the same network as 192.168.219.43/20?

Network \& Host Parts

- Is 192.168.208.5/20 on the same network as 192.168.219.43/20?

11000000101010001101000000000101

192	168	208	5

11000000101010001101101100101011
$192168 \quad 219 \quad 43$

Network \& Host Parts

- Classful addresses
- Older style addressing schema where all netmasks came in octets too.
- Class A: 0.0.0.0/8 through 127.255.255.255/8
- 128 networks of $16,777,216$ hosts
- Class B: 128.0.0.0/16 through 191.255.255.255/16
- 16,384 networks of 65,536 hosts
- Class C: 192.0.0.0/24 through 239.255.255.255/24
- 2,097,152 networks of 256 hosts

Network \& Host Parts

- Classful addresses
- Older style addressing schema wherepll $n \in r$ asks came in octets too.
- Class A: 0.0.0.0/8 through 27.2.5.55.255/8
-128 networks of $16,1,2$ osts
- Class B: 12، 0.1 OF 5 tirough 191.255.255.255/16
$=34$ networks of 65,536 hosts
C: 192.0.0.0/24 through 239.255.255.255/24
- 2,097,152 networks of 256 hosts

Reserved addresses

- Already mentioned two reserved host addresses on each network:
- Host part all Os: network address
- Host part all 1s: directed broadcast address
- IP 255.255.255.255 is limited broadcast address. Used to get an IP address via DHCP.
- All broadcast packets have TTL set to 1 (nonroutable)

Reserved addresses

- Class D: Multicast addresses
- 224.0.0.0 through 239.255.255.255
- Class E: Reserved
- 240.0.0.0 through 255.255.255.255
- Loopback
- 127.0.0.0/8 (127.0.0.0 through 127.255.255.255) always refers to "localhost." Allows apps on the same machine to communicate w/o routing.

Private IP Addresses

- Not enough IP addresses to cover all the devices connected to the Internet.
- Private IP address ranges are reserved for internal networks (usually hidden behind NAT)
- 10.0.0.0/8 (10.0.0.0 through 10.255.255.255)
- 172.16.0.0/12 (172.16.0.0 to 172.31.255.255)
- 192.168.0.0/16 (192.168.0.0 to 192.168.255.255)
- Defined by RFC 1918

Dividing Address Spaces

- Tier 1, 2 and 3 ISPs
- Tier 1 ISPs own large sections of the IP address range, which they "sublet" to Tier 2 ISPs using VLSM/CIDR (IANA assigns these and runs root DNS servers)
- Tier 2 ISPs then section off chunks to Tier 3 ISPs (also using VLSM/CIDR)
- Tier 3 ISPs often assign just a single IP address to an organization. These organizations hide RFC1919 networks behind NAT.

Dividing Address Spaces

- Example of subdividing

See page 220 and following on how to subnet a subnet.

RFC 3021

- Using 31-Bit Prefixes on IPv4 Point-to-Point Links
- It turns out that the following is a really common router layout:

RFC 3021

- Using 31-Bit Prefixes on IPv4 Point-to-Point Links
- Routers have many point-to-point links to other routers. Each interface on a router needs its own IP address. If we reserve the "network" and "broadcast" addresses, then we need a VLSM of /30 (2 reserved +2 interfaces)

RFC 3021

- Using 31-Bit Prefixes on IPv4 Point-to-Point Links

- But this wastes half the IP addresses for router meshes in "reserved" addresses.
- RFC 3021 says that for point-to-point links, using a /31 VLSM is okay. So we get those back.

RFC 3021

How to subnet

- Given a limited range of contiguous IP addresses, how do you break it up into separate networks with different numbers of hosts?
- Identify the number of needed networks
- Count the number of hosts on each (leaving some room to grow)
- Sort the list descending by host count
- Begin dividing up the address space.

How to subnet

- Ex: need 5 networks of 12, 55, 4, 62, and 100 hosts each.
-100 : next power of 2 is 128 . Has room.
-62 : next power of 2 is 64 . Needs room.
-55 : next power of 2 is 64 . Has room.
-12 : next power of 2 is 16 . Needs room.
-4 : is a power of 2 . Needs room.

How to subnet

- Ex: need 5 networks of 12, 55, 4, 62, and 100 hosts each.
- 128 hosts, needs 7 bits
- 128 hosts, needs 7 bits
- 64 hosts, needs 6 bits
- 32 hosts, needs 5 bits
- 16 hosts, needs 4 bits

How to subnet

- Ex: need 5 networks of 12, 55, 4, 62, and 100 hosts each.
- 128 hosts, needs 7 bits
- 128 hosts, needs 7 bits
- 64 hosts, needs 6 bits
- 32 hosts, needs 5 bits
- 16 hosts, needs 4 bits

Divide up the 10.0.0.0/8 network efficiently here.

How to subnet

- First network
- 128 hosts, needs 7 bits

With 7 bits needed, that's a / 25 VLSM

- Network address 10.0.0.0
- Broadcast address 10.0.0.127
- Therefore 10.0.0.0/25
- 126 hosts (10.0.0.1 through 10.0.0.126)

How to subnet

- Second network - starts after the first!
- 128 hosts, needs 7 bits
- Network address 10.0.0.128

With 7 bits needed, that's a / 25 VLSM

- Broadcast address 10.0.0.255
- Therefore 10.0.0.128/25
- 126 hosts (10.0.0.129 through 10.0.0.254)

How to subnet

- Third network - starts after the second!
- 64 hosts, needs 6 bits
- Network address 10.0.1.0
- Broadcast address 10.0.1.63

With 6 bits needed, that's a / 26 VLSM

- Therefore 10.0.1.0/26
- 62 hosts (10.0.1.1 through 10.0.1.62)

How to subnet

- Fourth network - starts after the third!
- 32 hosts, needs 5 bits
- Network address 10.0.1.64

With 5 bits needed, that's a / 27 VLSM

- Broadcast address 10.0.1.95
- Therefore 10.0.1.64/27
- 30 hosts (10.0.1.65 through 10.0.1.94)

How to subnet

- Fifth network - starts after the fourth!
- 16 hosts, needs 4 bits
- Network address 10.0.1.96

With 4 bits needed, that's a / 28 VLSM

- Broadcast address 10.0.1.111
- Therefore 10.0.1.96/28
- 14 hosts (10.0.1.97 through 10.0.1.110)

How to subnet

- Nice table representation

Orig Sz	Subnet	Net Addr	Bcast Addr	First host	Last host
100	$10.0 .0 .0 / 25$	10.0 .0 .0	10.0 .0 .127	10.0 .0 .1	10.0 .0 .126
62	$10.0 .0 .128 / 25$	10.0 .0 .128	10.0 .0 .255	10.0 .0 .129	10.0 .0 .254
55	$10.0 .1 .0 / 26$	10.0 .1 .0	10.0 .1 .63	10.0 .1 .1	10.0 .1 .62
12	$10.0 .1 .64 / 27$	10.0 .1 .64	10.0 .1 .95	10.0 .1 .65	10.0 .1 .94
4	$10.0 .1 .96 / 28$	10.0 .1 .96	10.0 .1 .111	10.0 .1 .97	10.0 .1 .110

How to subnet

- Nice table representation

Orig Sz	Subnet	Net Addr	Bcast Addr	First host	Last host
100	$10.0 .0 .0 / 25$	10.0 .0 .0	10.0 .0 .127	10.0 .0 .1	10.0 .0 .126
62	$10.0 .0 .128 / 25$	10.0 .0 .128	10.0 .0 .255	10.0 .0 .129	10.0 .0 .254
55	$10.0 .1 .0 / 26$	10.0 .1 .0	10.0 .1 .63	10.0 .1 .1	10.0 .1 .62
12	$10.0 .1 .64 / 27$	10.0 .1 .64	10.0 .1 .95	10.0 .1 .65	10.0 .1 .94
4	$10.0 .1 .96 / 28$	10.0 .1 .96	10.0 .1 .111	10.0 .1 .97	10.0 .1 .110

It's a good bet that a problem like this will be on the exam!

This Week's Outcomes

- Convert binary to decimal and decimal to binary to understand subnet masking.
- Apply bitwise operations to construct sub- and super-nets.
- Specify a strategy to dividing large networks into smaller versions (CIDR).
- Distinguish between public, private, and multicast address spaces (RFC1918)

Self Quiz

- A network admin needs to create a network that supports 16 hosts. What kind of netmask will work here?
- What does RFC1918 specify? What good does it do for network admins?
- Why did IANA move away from classful addresses to classless addresses?

Self Quiz

- A RFC 3021 compliant point-to-point router connection has IP address and VLSM 192.168.12.57/31.
- Write the netmask in dotted decimal
- What is the IP address and netmask of the other end of the connection?

Self Quiz

- A network admin needs to create 4 networks corresponding to 4 different cities. The cities have $35,22,19$, and 10 hosts respectively.
Draw a network diagram with IP address schemas drawn from 192.168.0.0/16 that will support this network with minimal wasted IP addresses.

Due this week

- Homework 3
- Participation 4

Next week

- Chapter 7 and 8 - Link layer and physical layer. How bits get from interface to interface.

Q \& A

- Questions, comments, concerns?

