COMP 204 – Principles of Computer Networks

Week 5

© 2011 Alex Elbert, Todd Whittaker

Agenda

- Review this week's learning outcomes
- Presentation of this week's material
- Introduce homework problems
- Q & A session

This Week's Outcomes

- List and describe several common logical network topologies.
- Contrast contention strategies in shared media access.
- Describe methods of encoding bits for physical media.
- Describe characteristics of common physical media.

Chapter 7 and 8

- Sending messages from device to device
- MAC (Media Access Control)
- Hardware addresses
- Physical media
- Signals and bits

Data Link

Physical

Implemented in software, defined by RFCs

FRANK

Implemented in hardware, defined by engineering standards bodies

Data Link Layer (OSI 2)

- What is a device?
 - Any "thing" on the network that isn't a wire.
 - Ex: hosts, switches, routers, access points, bridges, etc.
 - Typically, you plug the media (a cable, wire, strand, etc.) into a device.

FRANKLIN S

- What operates at layer 2?
 - Typically switches and bridges.

Data Link Layer (OSI 2)

- So, what happens in a layer 2 device?
 - Accept a frame on one medium
 - Decapsulate frame into a packet
 - Construct a new frame for the next medium
 - Place the new frame on the physical medium

This happens even if the receiving and sending medium are of the same kind.

Data Link Layer (OSI 2)

- Why have layer 2?
 - Alternative would be to have the network layer (3)
 know about every possible kind of media.
 - IP would need to change every time a new kind of network technology was released.

Frames

- What is a frame?
 - We're very close to the hardware so we need to have something that indicates the beginning and the end of the frame.
 - In written English, a sentence begins with a capital letter and ends with some kind of punctuation.
 - In networks, a special bit pattern indicates the beginning and ending of a frame. Devices pay attention to these so they can look at what's between them.

- What is a frame? — We're very close have something the end of the frame.

 What is a frame? This bit pattern cannot appear in the data. (Why?) Preventing this is a job for "encoding." hd
 - In written English, a secce begins with a capital letter and ends with socie kind of punctuation.
 - In networks, a special bit pattern indicates the beginning and ending of a frame. Devices pay attention to these so they can look at what's between them.

Frames

- What is a frame?
 - General elements in a frame:
 - Header:
 - Frame start pattern
 - Address (to and from)
 - Type of layer 3 data
 - Quality fields
 - Data (from layer 3)
 - Trailer:
 - Error detection
 - Frame stop pattern

2 layers of layer 2

- Layer 2 is split into an upper and lower layer
 - Upper layer: Talks to the network layer. Logical Link Control (LLC) lets multiple layer 3 protocols operate on the same network interface and media (i.e. same interface can support IPv4, IPv6, ICMP, and IPX simultaneously).
 - Lower layer: addressing (source / destination device) and delimiting according to media type.

Media Access Method (MAC)

- MAC regulates how the media is used
 - Controlled: only one device transmits at a time, no collisions, typically token-passing.
 - FDDI
 - Token Ring

Media Access Method (MAC)

- MAC regulates how the media is used
 - Controlled: only one device transmits at a time, no collisions, typically token-passing.
 - FDDI
 - Token Ring

Media Access Method (MAC)

- MAC regulates how the media is used
 - Controlled: only one device transmits at a time, no collisions, typically token-passing.
 - FDDI
 - Token Ring
 - Contention-based: devices transmit at any time, collisions happen, must detect or avoid collisions.
 - Ethernet
 - Wireless

Media Access Method (MAC)

- MAC regulates how the media is used
 - Contention based
 - CSMA/CD (carrier sense multiple access, collision detection) – devices listen until there's no traffic, then transmit something. Then they listen again to see if somebody else also transmitted. If a collision happened, use random exponential backoff timers.
 - Used with shared-media Ethernet (bus-based)

Media Access Method (MAC)

- MAC regulates how the media is used
 - Non-shared media: connections are point-topoint. If media is full duplex, then no contention.
 Half duplex must deal with only two parties.
 - Switches store and forward frames using internal buffers. Thus, no collisions. Hubs transmitted all frames to all devices, thus collisions were common.

Ring vs. bus vs. star vs. point-to-point

Source: http://learn-networking.com/network-design/a-guide-to-network-topology

Topologies

- Logical vs. Physical
 - Physical: how the wires are connected
 - Logical: "virtual" connections regardless of physical layout. Depends on the MAC.

Token Ring is a logical ring, but often a physical star, as is the older ARCNET.

FRANK

Ethernet Framing

Preamble	Destination	Source	Туре	Data	CRC
8 bytes	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes
Synchronization and delimiters.					
				EDANIZ	
				UNIVER	

Ethernet Framing

Ethernet Framing

Ethernet Framing

undergoing transformations along the way.

Physical Layer (OSI 1)

- Physical medium and signaling
 - Medium: the thing through which you transmit
 - Signaling: the stuff traveling through the medium.

Medium	Signal type		
Copper wires	High/low electrical voltages		
Fiber optic cables	Light (on/off)		
Wireless	Radio waves		

Physical Layer (OSI 1)

- Signaling and encoding
 - Signaling: how bits are represented

Physical Layer (OSI 1)

- Signaling and encoding
 - Encoding: grouping bits (using one pattern to represent another).
 - Why?? Helps distinguish frames from data. Certain bit patterns can be reserved. Keeps signals from generating too much heat, etc.
 - Ex: 4B/5B encoding: all possible 4 bit combinations are encoded in 5 bits with balanced 0/1 ratios. Certain 5 bit patterns are reserved for synchronization. Other bit patterns are just invalid. See p. 290.

Data Capacity

- Bandwidth vs. throughput vs. goodput
 - Bandwidth: theoretical amount of data per unit time. Includes physical medium and signaling properties
 - Throughput: what you can actually measure in transmitted bits.
 - Goodput: usable data bits at the application layer.
 Accounts for protocol overhead and retransmissions.

Physical Media: UTP

• Unshielded Twisted Pair

- Most common copper medium for LAN

- Unshielded Twisted Pair
 - Two different wiring schemas
 - EIA 568A
 - EIA 568B

Source: http://www.movvam.com/tech/Oth/cat5-network.htm

Physical Media: UTP

Physical Media: UTP

• Patch panels

Source: http://www.rackmountsolutions.net/Patch%20Panels.asp

Physical Media: UTP

• Patch panels

FRANK

FRAN

Source: http://mikebrandon.net/photos.htm

This Week's Outcomes

- List and describe several common logical network topologies.
- Contrast contention strategies in shared media access.
- Describe methods of encoding bits for physical media.
- Describe characteristics of common physical media.

Self Quiz

- What is the difference between the Link and Physical layers?
- What does MAC do? What two kinds of MAC are there?
- What is signaling? What is encoding? Why would we encode rather than send unencoded bits?

Self Quiz

- What is the difference between bandwidth, throughput, and goodput?
- What is the difference between a physical and a logical topology?
- What kinds of physical topologies have shared media? Describe three different topologies.

Self Quiz

- Why does a frame need a header and a trailer while the other PDUs (protocol data units) need only a header?
- Why are collisions on current Ethernet networks a thing of the past?
- Name several layer 2 devices.

Due this week • Homework 4 • Lab 2 • Participation 5 FRANK Next week • Chapter 9 and 10 – Deeper into Ethernet, ARP and RARP, network design, cabling.

