
ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 03, Part Week 03, Part 0101

1

OverviewOverview

Week 3 OverviewWeek 3 Overview

•• Week 2 reviewWeek 2 review
•• Software LifecycleSoftware Lifecycle•• Software LifecycleSoftware Lifecycle

••Waterfall modelWaterfall model

•• Spiral modelSpiral model

•• VariablesVariables
•• Name (identifier)Name (identifier)

2

•• Name (identifier)Name (identifier)

•• Data typeData type

•• ValueValue

•• ScopeScope

Week 3 OverviewWeek 3 Overview

•• Week 2 reviewWeek 2 review

•• OperatorsOperators

•• ArithmeticArithmetic

•• RelationalRelational

•• LogicalLogical

3

Week 3 OverviewWeek 3 Overview

•• OutcomesOutcomes

•• Describe the advantages and Describe the advantages and
techniques of modularized programs.techniques of modularized programs.

•• Decompose a problem into Decompose a problem into
modularized components.modularized components.

•• Write and call functions that utilize Write and call functions that utilize

4

•• Write and call functions that utilize Write and call functions that utilize
parameters and return values.parameters and return values.

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 03, Part Week 03, Part 0202

5

Modularized ProgramsModularized Programs

AlgorithmAlgorithm

•• What is an algorithm?What is an algorithm?

•• A wellA well--defined defined sequencesequence of steps that of steps that
is used to solve a is used to solve a specific problemspecific problem

6

Problem Solving SupplementProblem Solving Supplement

•• Read “Problem Solving Supplement”Read “Problem Solving Supplement”

•• Available asAvailable as

•• Word document on Course web site in Word document on Course web site in
Module 3 Key Points 3.1Module 3 Key Points 3.1

•• "ProbSolveSupplement.doc" on Course "ProbSolveSupplement.doc" on Course
CDCDCDCD

7

Four Step Problem SolvingFour Step Problem Solving

1.1. Identify general logical chunksIdentify general logical chunks

2.2. Refine each logical chunk into Refine each logical chunk into 2.2. Refine each logical chunk into Refine each logical chunk into
more logical chunks (if possible)more logical chunks (if possible)

3.3. Add detail to each logical chunkAdd detail to each logical chunk

4.4. Organize the chunks into the Organize the chunks into the
appropriate orderappropriate orderappropriate orderappropriate order

8

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

•• Take big tasks and break them down Take big tasks and break them down
into successively smaller tasks.into successively smaller tasks.

•• A very natural way to workA very natural way to work

•• Ex: “Clean the house” algorithmEx: “Clean the house” algorithm

9

Modularized ProgramsModularized Programs

“Top-down design”

10

“Top-down design”

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

•• Take big tasks and break them down Take big tasks and break them down
into successively smaller tasks.into successively smaller tasks.

•• Perform the smaller tasks working your Perform the smaller tasks working your
way back up the tree.way back up the tree.

11

Modularized ProgramsModularized Programs

Do these first

12

Do these first

Modularized ProgramsModularized Programs

To accomplish this

13

To accomplish this

“Bottom-up
implementation”

A FunctionA Function

•• FunctionFunction
•• Def: Group of related programming Def: Group of related programming •• Def: Group of related programming Def: Group of related programming
statements into a compact module to be statements into a compact module to be
called (invoked) from many other places in called (invoked) from many other places in
codecode

•• Familiar with Familiar with writelnwriteln()() and and prompt()prompt()

•• Why? Write once, reuse many times!Why? Write once, reuse many times!•• Why? Write once, reuse many times!Why? Write once, reuse many times!

•• Empty function shell shown in key point Empty function shell shown in key point
3.2 and looks like…3.2 and looks like…

14

A Function ShellA Function Shell

•• A shell of a function:A shell of a function:

function functionName(param1, param2, ...) {
statement#1;
statement#2;
...
statement#n;
return someValue;

}

15

}

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

•• Two ways to write as functionsTwo ways to write as functions

•• BottomBottom--up up –– write the functions at the write the functions at the
bottom level of the tree, working your bottom level of the tree, working your
way back up. Easy to test.way back up. Easy to test.

•• TopTop--down down –– write the “skeletons” of write the “skeletons” of •• TopTop--down down –– write the “skeletons” of write the “skeletons” of
functions at the top level first, and “stubs” functions at the top level first, and “stubs”
of functions at the lowest level. Easy to of functions at the lowest level. Easy to
discern overall structure.discern overall structure.

16

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

function makeTheBed(bed) {

// some code here that operates on bed

}

function dustTheDresser(dresser) {

// some here that operates on dresser

}

17

}

// etc.

“Stubs”

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

function cleanOneBedroom(bedroom) {

makeTheBed(bedroom.bed);

dustTheDresser(bedroom.dresser);

sweepTheFloor(bedroom.floor);

} “Skeleton”

18

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

function cleanAllBedrooms(bedroomList) {

foreach (bedroom in bedroomList) {

cleanOneBedroom(bedroom);

}

}

19

Modularized ProgramsModularized Programs

•• Functional decompositionFunctional decomposition

function cleanTheHouse(house) {

cleanTheKitchen(house.kitchen);

cleanAllBedrooms(house.bedroomList);

cleanAllBathrooms(house.bathroomList);

cleanTheFamilyRoom(house.familyRoom);

}

20

Modularized ProgramsModularized Programs

•• AdvantagesAdvantages

•• “Working set” for developers is smaller“Working set” for developers is smaller

•• Code reuse across many modules Code reuse across many modules
(utility functions, etc)(utility functions, etc)

•• Ease of testingEase of testing

•• Clean lines of separation for teamworkClean lines of separation for teamwork•• Clean lines of separation for teamworkClean lines of separation for teamwork

21

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 03, Part Week 03, Part 0303

22

FunctionsFunctions

Calling & Writing FunctionsCalling & Writing Functions

•• Calling functionsCalling functions

•• Syntax:Syntax:

var result = doSomething(param1, param2);

var result = someObject.doSomething(param1,

23

var result = someObject.doSomething(param1,

param2);

Calling & Writing FunctionsCalling & Writing Functions

•• Writing functionsWriting functions

•• Syntax:Syntax:

function doSomething(param1, param2) {

var someResult = 0;

// some statements;

return someResult;

24

}

Calling & Writing FunctionsCalling & Writing Functions

•• Writing functionsWriting functions

•• Syntax:Syntax:

var doSomething = function(param1, param2) {

var someResult = 0;

// some statements;

return someResult;

25

}

Calling & Writing FunctionsCalling & Writing Functions

•• ExampleExample

•• A function that will “bold” textA function that will “bold” text

function makeBold(text) {

var result = "" + text + "";

return result;

}

26

Calling & Writing FunctionsCalling & Writing Functions

•• Function CompositionFunction Composition

•• Using the return value from one Using the return value from one
function as a parameter to anotherfunction as a parameter to another

document.writeln(makeBold("Hello World!"));

27

Calling & Writing FunctionsCalling & Writing Functions

•• ExampleExample

•• Function to return average of 3 Function to return average of 3
numbers:numbers:

28

Calling & Writing FunctionsCalling & Writing Functions

•• ExampleExample

•• Function to return the maximum of 3 Function to return the maximum of 3
numbers (hint: use the “?:” operator):numbers (hint: use the “?:” operator):

29

Calling & Writing FunctionsCalling & Writing Functions

•• ExampleExample

•• Function to Function to convert a Fahrenheit convert a Fahrenheit
parameter into Celsiusparameter into Celsius

30

Calling & Writing FunctionsCalling & Writing Functions

•• Variable scopeVariable scope

•• “Scope” is a range of lines during “Scope” is a range of lines during
which the variable is able to be used.which the variable is able to be used.

•• A variable declared using “A variable declared using “varvar” within ” within

a function is inaccessible from outside a function is inaccessible from outside
the function. Called “local variables”the function. Called “local variables”the function. Called “local variables”the function. Called “local variables”

•• Parameters are just like local variablesParameters are just like local variables

•• Global variables == BAD!Global variables == BAD!

31

Calling & Writing FunctionsCalling & Writing Functions

•• Parameters are passed by valueParameters are passed by value

var x = 3;

function foo(y)

{

alert(x);

++y;

alert(y);

}

Uses a global variable

Makes a copy of x in y

32

}

foo(x);

alert(x);

Makes a copy of x in y

Calling & Writing FunctionsCalling & Writing Functions

•• Functions as parametersFunctions as parameters

•• Functions are themselves variables.Functions are themselves variables.

•• Any variable can be passed as a Any variable can be passed as a
parameter to a function.parameter to a function.

•• Therefore, a function can be passed to Therefore, a function can be passed to
another functionanother functionanother functionanother function

33

Calling & Writing FunctionsCalling & Writing Functions

•• Functions as parametersFunctions as parameters

function less(x, y) {

return x < y;

}

function greater(x, y) {

return x > y;

}

function eitherOr(func, x, y) {

34

function eitherOr(func, x, y) {

return func(x, y) ? x : y;

}

alert(eitherOr(less, 5, 2));

alert(eitherOr(greater, 5, 2));

Calling & Writing FunctionsCalling & Writing Functions

•• Functions as return valuesFunctions as return values

function countUpFrom(x) {

var y = x;

return function() {

alert(y);

++y;

}

}

A “closure”

35

}

var myFunction = countUpFrom(8);

myFunction();

myFunction();

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 03, Part Week 03, Part 0404

36

Event HandlersEvent Handlers

Event HandlersEvent Handlers

•• EventsEvents

•• Generated in response to user actionsGenerated in response to user actions

•• Button clicksButton clicks

•• Mouse Mouse oversovers

•• Focus/blurFocus/blur

•• KeypressesKeypresses•• KeypressesKeypresses

•• And many othersAnd many others

37

Event HandlersEvent Handlers

•• EventsEvents

•• Generally want something to happen Generally want something to happen
when the user generates an event.when the user generates an event.

•• Use the Use the <input> <input> tag to create UI tag to create UI
elements and the “elements and the “onXXXonXXX()()” attributes ” attributes

to associate an event handler.to associate an event handler.to associate an event handler.to associate an event handler.

38

Event HandlersEvent Handlers

•• EventsEvents

•• Example:Example:

<input type="button" value="Click me!"

onclick="alert('Nice click.')" />

39

Event HandlersEvent Handlers

•• EventsEvents

•• Generally, Generally, tags are found tags are found •• Generally, Generally, <input> <input> tags are found tags are found
within a within a <form> <form> tag, but not tag, but not

exclusively.exclusively.

•• ““typetype” attribute of ” attribute of <input> <input> defines defines

what kind of UI control is displayedwhat kind of UI control is displayedwhat kind of UI control is displayedwhat kind of UI control is displayed

•• button, text, button, text, textareatextarea, select, etc., select, etc.

40

Event HandlersEvent Handlers

•• Accessing UI elementsAccessing UI elements

•• Be sure to assign the “Be sure to assign the “ ” attribute to ” attribute to •• Be sure to assign the “Be sure to assign the “idid” attribute to ” attribute to
all all <input><input> elements.elements.

•• Use Use document.getElementByIddocument.getElementById() () to to

get access to the UI element.get access to the UI element.

•• Read from or assign something to the Read from or assign something to the •• Read from or assign something to the Read from or assign something to the
element’s “element’s “valuevalue” property.” property.

41

Event HandlersEvent Handlers

•• EventsEvents

•• Example: incrementing counter Example: incrementing counter
http://cs.franklin.edu/~whittakt/ITEC136/examples/Counter.htmlhttp://cs.franklin.edu/~whittakt/ITEC136/examples/Counter.html

42

Event HandlersEvent Handlers

•• EventsEvents

•• Try converting counter into a PIN entry Try converting counter into a PIN entry
padpad

•• Try Try writing a Fahrenheit writing a Fahrenheit to Celsius to Celsius
conversion conversion using using eventevent--driven driven
programming with programming with functions.functions.programming with programming with functions.functions.

43

Questions?Questions?

44

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 03, Part Week 03, Part 0505

45

Self QuizSelf Quiz

Self QuizSelf Quiz

•• What are “stubs” and “skeletons?”What are “stubs” and “skeletons?”

•• What is an algorithm?What is an algorithm?

•• What is the scope of a variable?What is the scope of a variable?

•• What are the two scopes in What are the two scopes in
JavascriptJavascript??JavascriptJavascript??

•• Why are global variables potentially Why are global variables potentially
dangerous?dangerous?

46

Self QuizSelf Quiz

•• Why do we write code inside Why do we write code inside
functions?functions?functions?functions?

•• Write a function that computes the Write a function that computes the
body mass index of a person using body mass index of a person using
the height and weight as the height and weight as
parameters.parameters.parameters.parameters.

47

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 03, Part Week 03, Part 0606

48

Upcoming deadlinesUpcoming deadlines

Upcoming DeadlinesUpcoming Deadlines

•• Homework Homework 3 3 –– Due Due January 26January 26

•• PrePre--class 4 class 4 –– Due January 26Due January 26

•• Lab 1 Lab 1 –– Due February 2Due February 2

•• Exam 1 Exam 1 –– In class In class February 2February 2

•• Reflection paper draft 1 Reflection paper draft 1 –– Due Due

49

•• Reflection paper draft 1 Reflection paper draft 1 –– Due Due
February 2February 2

