
ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 12, 12, Part 01Part 01

1

OverviewOverview

Week Week 12 Overview12 Overview

•• Week 11 reviewWeek 11 review

•• Associative Associative ArraysArrays

•• Common Array OperationsCommon Array Operations

•• Inserting Inserting –– shifting elements rightshifting elements right

•• Removing Removing –– shifting elements leftshifting elements left

•• Copying Copying –– deep vs. shallowdeep vs. shallow•• Copying Copying –– deep vs. shallowdeep vs. shallow

•• Searching Searching –– linear vs. binarylinear vs. binary

•• Appending to an ArrayAppending to an Array

Week 12 OverviewWeek 12 Overview

•• Week 11 reviewWeek 11 review

•• Deep Deep Copy vs. Shallow CopyCopy vs. Shallow Copy

•• Linear Search Linear Search –– no sort requiredno sort required

•• Binary Search Binary Search –– needs sorted arrayneeds sorted array

Week 12 OverviewWeek 12 Overview

•• OutcomesOutcomes

•• Demonstrate Demonstrate the execution of the execution of
selection, insertion and bubble sorts.selection, insertion and bubble sorts.

•• Profile Profile and analyze the performance of and analyze the performance of
selection, insertion, and bubble sorts.selection, insertion, and bubble sorts.

•• Work Work with multiwith multi--dimensional arraysdimensional arrays..

4

•• Work Work with multiwith multi--dimensional arraysdimensional arrays..

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 12, 12, Part Part 0202

5

SortingSorting

Array SortingArray Sorting

•• Sorting an arraySorting an array

•• Many different array sorting algorithms Many different array sorting algorithms
with many different tradeoffs.with many different tradeoffs.

•• QuadraticQuadratic sorting algorithms: selection sorting algorithms: selection
sort, insertion sort, and bubble sortsort, insertion sort, and bubble sort..

6

Array SortingArray Sorting

•• Sorting an arraySorting an array

•• Many different array sorting algorithms Many different array sorting algorithms
with many different tradeoffs.with many different tradeoffs.

•• QuadraticQuadratic sorting algorithms: selection sorting algorithms: selection
sort, insertion sort, and bubble sortsort, insertion sort, and bubble sort..

7

Quadratic: the time that it takes to
sort an array is proportional to the
square of the number of elements.

Array SortingArray Sorting

•• Selection sortSelection sort

•• Divide array into two parts: sorted left Divide array into two parts: sorted left
and unsorted right.and unsorted right.

•• From the unsorted right, find the From the unsorted right, find the
smallest element. Swap it with the smallest element. Swap it with the
“border” element.“border” element.“border” element.“border” element.

•• Repeat until all is sorted.Repeat until all is sorted.

8

Array SortingArray Sorting

•• Selection sortSelection sort

Pass 0 1 2 3 4 5 6 7

0 16 11 21 32 41 20 3 9

1

2

3

4

border X

unsorted X

sorted X

selected X

9

4

5

6

7

Array SortingArray Sorting

•• Selection sortSelection sort

Pass 0 1 2 3 4 5 6 7

0 16 11 21 32 41 20 3 9

1 3 11 21 32 41 20 16 9

2 3 9 21 32 41 20 16 11

3 3 9 11 32 41 20 16 21

4 3 9 11 16 41 20 32 21

border X

unsorted X

sorted X

selected X

10

4 3 9 11 16 41 20 32 21

5 3 9 11 16 20 41 32 21

6 3 9 11 16 20 21 32 41

7 3 9 11 16 20 21 32 41

Array SortingArray Sorting

•• Selection sortSelection sort
function selectionSort(arr, left, right) {

for (var i = left; i < right; ++i)

{

var min = i;

for (var j = i; j < right; ++j)

if (arr[min] > arr[j])

min = j;

Finds the index
of the smallest
element

11

var temp = arr[min];

arr[min] = arr[i];

arr[i] = temp;

}

}

Swaps the border
element with the
smallest element

Array SortingArray Sorting

•• Selection sortSelection sort

•• Efficiency: how many comparisons Efficiency: how many comparisons
take place?take place?

// a portion of the selection sort

for (var i = 0; i < arr.length; ++i)

{

var min = i;

12

var min = i;

for (var j = i; j < arr.length; ++j)

if (arr[min] > arr[j])

min = j;

}

Array SortingArray Sorting

•• Selection sortSelection sort

•• Efficiency: how many comparisons Efficiency: how many comparisons
take place?take place?

// a portion of the selection sort

for (var i = 0; i < arr.length; ++i)

{

var min = i;

Outer loop executes n Outer loop executes n
times where n is the
array length.

13

var min = i;

for (var j = i; j < arr.length; ++j)

if (arr[min] > arr[j])

min = j;

} Inner loop executes n,
n-1, n-2, … 1 times
depending on i.

Array SortingArray Sorting

•• Selection sortSelection sort

•• Efficiency: how many comparisons Efficiency: how many comparisons
take place?take place?

•• The orange and yellow boxes in the The orange and yellow boxes in the
previous slide show the number of previous slide show the number of
comparisons.comparisons.comparisons.comparisons.

14

Array SortingArray Sorting

•• Selection sortSelection sort

•• Efficiency: how many comparisons Efficiency: how many comparisons
take place?take place?

•• The orange and yellow boxes in the The orange and yellow boxes in the
previous slide show the number of previous slide show the number of
comparisons.comparisons.comparisons.comparisons.

•• This is half of an n*n grid. Thus the This is half of an n*n grid. Thus the
number of comparisons grows as the number of comparisons grows as the
square of the array length.square of the array length.

15

Array SortingArray Sorting

•• Selection sortSelection sort

•• Efficiency: how many comparisons Efficiency: how many comparisons
take place?take place?

•• If If nn is the length of the array, then the is the length of the array, then the
number of comparisons (f(number of comparisons (f(nn))))
mathematically is approximately:mathematically is approximately:mathematically is approximately:mathematically is approximately:

16

2)(nnf =

Array SortingArray Sorting

•• Selection sortSelection sort

•• Efficiency: how many comparisons Efficiency: how many comparisons
take place?take place?

•• If If nn is the length of the array, then the is the length of the array, then the
number of comparisons (f(number of comparisons (f(nn))))
mathematically is approximately:mathematically is approximately:mathematically is approximately:mathematically is approximately:

17

2)(nnf = A “quadratic” equation.
Thus, selection sort is a
quadratic algorithm.

Array SortingArray Sorting

•• Insertion sortInsertion sort

•• Divide array into two parts: sorted left Divide array into two parts: sorted left
and unsorted right.and unsorted right.

•• Insert the “border” element into the Insert the “border” element into the
sorted left where it belongs, shifting sorted left where it belongs, shifting
elements to the right as needed.elements to the right as needed.elements to the right as needed.elements to the right as needed.

•• Repeat until all is sorted.Repeat until all is sorted.

18

Array SortingArray Sorting

•• Insertion sortInsertion sort

Pass 0 1 2 3 4 5 6 7

0 16 11 21 32 41 20 3 9

1

2

3

4

border X

unsorted X

sorted X

19

4

5

6

7

Array SortingArray Sorting

•• Insertion sortInsertion sort

Pass 0 1 2 3 4 5 6 7

0 16 11 21 32 41 20 3 9

1 11 16 21 32 41 20 3 9

2 11 16 21 32 41 20 3 9

3 11 16 21 32 41 20 3 9

4 11 16 21 32 41 20 3 9

border X

unsorted X

sorted X

20

4 11 16 21 32 41 20 3 9

5 11 16 20 21 32 41 3 9

6 3 11 16 20 21 32 41 9

7 3 9 11 16 20 21 32 41

Array SortingArray Sorting

•• Insertion sortInsertion sort
function insertionSort(arr, left, right)

{

for (var i=left + 1; i<right; ++i)

{

var j;

var temp = arr[i];

for (j = i - 1; j >= left && arr[j] > temp; --j)

21

for (j = i - 1; j >= left && arr[j] > temp; --j)

arr[j + 1] = arr[j];

arr[j + 1] = temp;

}

}

Array SortingArray Sorting

•• Insertion sortInsertion sort
function insertionSort(arr, left, right)

{

for (var i=left + 1; i<right; ++i)

{

var j;

var temp = arr[i];

for (j = i - 1; j >= left && arr[j] > temp; --j)

The index “i” is the
border between
sorted and unsorted.

22

for (j = i - 1; j >= left && arr[j] > temp; --j)

arr[j + 1] = arr[j];

arr[j + 1] = temp;

}

}

Moves every element
greater than the border
one index right.

Place the border element
where it belongs

Array SortingArray Sorting

•• Insertion sortInsertion sort

•• Efficiency: how many element shifts Efficiency: how many element shifts
could take place?could take place?

23

Array SortingArray Sorting

•• Bubble sortBubble sort

•• Divide array into two parts: sorted Divide array into two parts: sorted
right right and unsorted and unsorted leftleft..

•• Compare the leftmost element against Compare the leftmost element against
its neighbor to the right. If the two its neighbor to the right. If the two
are out of order, swap them. Do this are out of order, swap them. Do this are out of order, swap them. Do this are out of order, swap them. Do this
for each pair in the row.for each pair in the row.

•• Repeat for each row until all is sorted.Repeat for each row until all is sorted.

24

Array SortingArray Sorting

•• Bubble sortBubble sort

Pass 0 1 2 3 4 5 6 7

0 16 11 21 32 41 20 3 9

1

2

3

4

unsorted X

sorted X

25

4

5

6

7

Array SortingArray Sorting

•• Bubble sortBubble sort

Pass 0 1 2 3 4 5 6 7

0 16 11 21 32 41 20 3 9

1 11 16 21 32 20 3 9 41

2 11 16 21 20 3 9 32 41

3 11 16 20 3 9 21 32 41

4 11 16 3 9 20 21 32 41

unsorted X

sorted X

26

4 11 16 3 9 20 21 32 41

5 11 3 9 16 20 21 32 41

6 3 9 11 16 20 21 32 41

7 3 9 11 16 20 21 32 41

Array SortingArray Sorting

•• Bubble sortBubble sort
function bubbleSort(arr, left, right) {

var didSwap = true;

var last = right - 1;

while (didSwap) {

didSwap = false;

for (var i=left; i<last; ++i)

if (arr[i] > arr[i + 1]) {

didSwap = true;

27

didSwap = true;

// swap arr[i] with arr[i + 1] (omitted)

}

--last;

}

}

Array SortingArray Sorting

•• Bubble sortBubble sort
function bubbleSort(arr, left, right) {

var didSwap = true;

var last = right - 1;

while (didSwap) {

didSwap = false;

for (var i=left; i<last; ++i)

if (arr[i] > arr[i + 1]) {

didSwap = true;

Loop terminates when
we don’t swap anything
in a pass (i.e. is sorted).

28

didSwap = true;

// swap arr[i] with arr[i + 1] (omitted)

}

--last;

}

}

If they’re out of
order, swap them and
set the flag to true

Always correctly Always correctly
place the largest
element at index
“last.”

Array SortingArray Sorting

•• Bubble sortBubble sort

•• Efficiency: how many swaps could take Efficiency: how many swaps could take
place?place?

29

Array SortingArray Sorting

•• Profiling sorting algorithmsProfiling sorting algorithms

•• Timing each sorting algorithm on the Timing each sorting algorithm on the
same set of data multiple times.same set of data multiple times.

•• Plot the data and draw some Plot the data and draw some
conclusions.conclusions.

30

Array SortingArray Sorting

•• Profiling sorting algorithmsProfiling sorting algorithms

•• Code in the course: SortTimings.htmlCode in the course: SortTimings.html

Elements Insertion Selection Bubble

200 16 14 31

400 62 47 125

800 94 78 250

1600 297 375 953

31

1600 297 375 953

3200 1266 1562 3782

6400 5297 6422 15453

12800 20517 25626 62160

60,000

70,000

Insertion

Selection

Array SortingArray Sorting

20,000

30,000

40,000

50,000

60,000

T
im

e
 (

m
il

li
se

co
n

d
s)

Bubble

0

10,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Number of elements

32

60,000

70,000

Insertion

Selection

Array SortingArray Sorting

20,000

30,000

40,000

50,000

60,000

T
im

e
 (

m
il

li
se

co
n

d
s)

Bubble

All these algorithms are
slow, however,
insertion sort is best of
the worst because it
moves the least data.
Likewise, bubble sort is
the worst of the worst

0

10,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000

Number of elements

33

the worst of the worst
because it moves the
most data.

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 12, 12, Part Part 0303

34

MultiMulti--dimensional arraysdimensional arrays

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays

•• Higher dimensionsHigher dimensions

•• 11--D: consists of columnsD: consists of columns

•• 22--D: rows and columnsD: rows and columns

•• 33--D: depth, rows, and columnsD: depth, rows, and columns

•• 44--D: No 3D: No 3--space space corollarycorollary•• 44--D: No 3D: No 3--space space corollarycorollary

•• Key idea: 1D arrays are Key idea: 1D arrays are processed processed with with
a single loop. 2D arrays are a single loop. 2D arrays are processed processed
with nested loopswith nested loops

35

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays

•• MultiMulti--dimensional arrays are arrays dimensional arrays are arrays
that contain other arrays as data.that contain other arrays as data.

•• Ex: matrix in mathematicsEx: matrix in mathematics

var matrix = [

[1, 2, 3, 4, 5],

36

[1, 2, 3, 4, 5],

[6, 7, 8, 9, 10],

[11, 12, 13, 14, 15]

];

alert(matrix.length + " by " + matrix[0].length);

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays

function makeMatrix(rows, cols)

{

var result = new Array(rows);

for (var i = 0; i < rows; ++i)

{

result[i] = new Array(cols);

}

37

}

return result;

}

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays

function makeMatrix(rows, cols)

{

var result = new Array(rows);

for (var i = 0; i < rows; ++i)

{

result[i] = new Array(cols);

}

38

}

return result;

}
An array gets
placed inside
another array.

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays

function multiplicationTable(rows, cols)

{

var matrix = makeMatrix(rows, cols);

for (var i = 0; i < matrix.length; ++i)

{

for (var j = 0; j < matrix[i].length; ++j)

{

39

{

matrix[i][j] = (i + 1) * (j + 1);

}

}

return matrix;

}

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays
This is the

function multiplicationTable(rows, cols)

{

var matrix = makeMatrix(rows, cols);

for (var i = 0; i < matrix.length; ++i)

{

for (var j = 0; j < matrix[i].length; ++j)

{

This is the
number of rows

40

{

matrix[i][j] = (i + 1) * (j + 1);

}

}

return matrix;

}

This is the number
of columns within
a row

Use double subscripts
to access the element

MultiMulti--dimensional Arraysdimensional Arrays

•• MultiMulti--dimensional arraysdimensional arrays

•• Key idea: 1D arrays are generally Key idea: 1D arrays are generally
processed with a single loop. 2D processed with a single loop. 2D
arrays are generally processed with arrays are generally processed with
nested loopsnested loops..

41

Questions?Questions?

42

Next WeekNext Week

•• ObjectObject--based programmingbased programming

•• ConstructorsConstructors!!

•• Properties!Properties!

•• Methods!Methods!

•• Oh myOh my!!

43

•• Exception handlingException handling

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 12, 12, Part 04Part 04

44

Self QuizSelf Quiz

Self QuizSelf Quiz

•• Write a function Write a function isSortedisSorted that that

receives an array as a parameter receives an array as a parameter receives an array as a parameter receives an array as a parameter
and returns true if the array is in and returns true if the array is in
sorted order, and false otherwise.sorted order, and false otherwise.

•• Write a function Write a function randomizerandomize that that

takes an array as a parameter and takes an array as a parameter and takes an array as a parameter and takes an array as a parameter and
swaps randomly selected elements swaps randomly selected elements
in the array.in the array.

45

Self QuizSelf Quiz

•• Write a function Write a function addMatrixaddMatrix that that

takes two 2D arrays of the same takes two 2D arrays of the same takes two 2D arrays of the same takes two 2D arrays of the same
dimension as parameters. It should dimension as parameters. It should
return a new array with matching return a new array with matching
dimensions containing the sum i.e.dimensions containing the sum i.e.

46

4 1

5 2

3 8

10 6

14 3

9 7

4 4

0 1

18 4

14 9

7 12

0 7

Self QuizSelf Quiz

•• Write a function Write a function transposetranspose that that

takes a 2D array as a parameter and takes a 2D array as a parameter and takes a 2D array as a parameter and takes a 2D array as a parameter and
returns an new array with the rows returns an new array with the rows
and columns exchanged. i.e.and columns exchanged. i.e.

11 12 13 14
11 21

47

11 12 13 14

21 22 23 24
12 22

13 23

14 24

Self QuizSelf Quiz

•• Demonstrate on paper the sequence Demonstrate on paper the sequence
of passes through bubble sort, of passes through bubble sort, of passes through bubble sort, of passes through bubble sort,
insertion sort, and selection sort for insertion sort, and selection sort for
the following array of datathe following array of data

0 1 2 3 4 5 6 7 8 9 10 11

48

0 1 2 3 4 5 6 7 8 9 10 11

10 2 3 6 9 1 5 4 12 8 7 11

Self QuizSelf Quiz

•• How would you reverse the order How would you reverse the order
(ascending vs. descending) of the (ascending vs. descending) of the (ascending vs. descending) of the (ascending vs. descending) of the
sorting functions studied this week?sorting functions studied this week?

•• If an insertion sort of 100,000 If an insertion sort of 100,000
elements takes 14 seconds, how elements takes 14 seconds, how
long would a sort of 300,000 long would a sort of 300,000 long would a sort of 300,000 long would a sort of 300,000
elements take?elements take?

49

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 12, 12, Part Part 0505

50

Upcoming deadlinesUpcoming deadlines

Upcoming DeadlinesUpcoming Deadlines

•• Due March 30Due March 30

•• PrePre--class exercise 13class exercise 13

•• Homework 10Homework 10

51

