
ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 13, Part 01Week 13, Part 01

1

OverviewOverview

Week 13 OverviewWeek 13 Overview

•• Week 12 reviewWeek 12 review

•• Sorting algorithms for arraysSorting algorithms for arrays

•• Selection sortSelection sort

•• Insertion sortInsertion sort

•• Bubble sortBubble sort

•• MultiMulti--dimensional arraysdimensional arrays

2

•• MultiMulti--dimensional arraysdimensional arrays

•• An array that holds other arrays as data.An array that holds other arrays as data.

Week 13 OverviewWeek 13 Overview

•• OutcomesOutcomes

•• List the benefits of objectList the benefits of object--orientation.orientation.

•• Describe classes, methods, and Describe classes, methods, and
encapsulation and the mechanisms encapsulation and the mechanisms
used to implement them.used to implement them.

3

Week 13 OverviewWeek 13 Overview

•• OutcomesOutcomes

•• Apply the principles of encapsulation to Apply the principles of encapsulation to
solve a given problem.solve a given problem.

•• Explain exception handling for error Explain exception handling for error
detection and correction.detection and correction.

4

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 13, Part 02Week 13, Part 02

5

Object Oriented ConceptsObject Oriented Concepts

Object Oriented ConceptsObject Oriented Concepts

•• What is an object?What is an object?

•• All objects have 3 characteristicsAll objects have 3 characteristics

••State State –– data associated with the objectdata associated with the object

••BehaviorBehavior –– code associated with the code associated with the
objectobject

•• IdentityIdentity –– a location where the object a location where the object •• IdentityIdentity –– a location where the object a location where the object
exists in memoryexists in memory

6

Object Oriented ConceptsObject Oriented Concepts

•• What is an objectWhat is an object

7

Object Oriented ConceptsObject Oriented Concepts

•• What is an object?What is an object?

•• State (properties)State (properties)

•• Data kept inside the object.Data kept inside the object.

•• The internal representation of the object The internal representation of the object
need not be the same as how it is seen need not be the same as how it is seen
from the outside.from the outside.from the outside.from the outside.

•• Ex: Ex: DateDate object in JS represents a date object in JS represents a date

and time as a number of milliseconds and time as a number of milliseconds
elapsed since January 1, 1970.elapsed since January 1, 1970.

8

Object Oriented ConceptsObject Oriented Concepts

•• What is an object?What is an object?

•• Behavior (method)Behavior (method)

•• A function kept inside an objectA function kept inside an object

•• Has access to all the properties of the Has access to all the properties of the
object as well as any parameters and object as well as any parameters and
global variables.global variables.global variables.global variables.

9

Object Oriented ConceptsObject Oriented Concepts

•• What is an object?What is an object?

•• Identity Identity (container)(container)

•• Memory location of the object.Memory location of the object.

•• One variable that holds many other One variable that holds many other
variables (methods and properties) within variables (methods and properties) within
itself.itself.itself.itself.

•• Very similar to an associative array. In Very similar to an associative array. In
fact, all JS objects are associative arrays.fact, all JS objects are associative arrays.

10

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 13, Part 03Week 13, Part 03

11

Custom Objects in JSCustom Objects in JS

Custom Objects in JSCustom Objects in JS

•• Let’s build an object!Let’s build an object!

var car = new Object()
car.make = "Chevy";
car.model = "Corvette";
car.color = "Red";
car.toString = function()
{
return this.color + " " + this.make

12

return this.color + " " + this.make
+ " " + this.model;

}
alert(car.toString());

Custom Objects in JSCustom Objects in JS

•• Let’s build an object!Let’s build an object! car

var car = new Object()
car.make = "Chevy";
car.model = "Corvette";
car.color = "Red";
car.toString = function()
{
return this.color + " " + this.make

toString

make

model

color

13

return this.color + " " + this.make
+ " " + this.model;

}
alert(car.toString());

Custom Objects in JSCustom Objects in JS

•• Let’s build an object!Let’s build an object!

var car = new Object()
car.make = "Chevy";
car.model = "Corvette";
car.color = "red";
car.toString = function()
{
return this.color + " " + this.make

make, model, and color
are properties (state)
within the object.

toString is a method

(behavior) of the object.
Notice different syntax!

14

return this.color + " " + this.make
+ " " + this.model;

}
alert(car.toString()); Within a method, the keyword

“this” refers to the current
object (car in this case)

Custom Objects in JSCustom Objects in JS

•• Let’s build an object!Let’s build an object!

var car = new Object()
car.make = "Chevy";
car.model = "Corvette";
car.color = "red";
car.toString = function()
{
return this.color + " " + this.make

make, model, and color
are properties (state)
within the object.

toString is a method

(behavior) of the object.
Notice different syntax!

15

return this.color + " " + this.make
+ " " + this.model;

}
alert(car.toString()); Within a method, the keyword

“this” refers to the current
object (car in this case)

Custom Objects in JSCustom Objects in JS

•• Let’s make it easier to build objects!Let’s make it easier to build objects!

•• Try this: write a function called Try this: write a function called
makeCarmakeCar that receives a make, model, that receives a make, model,

and color as parameters and returns a and color as parameters and returns a
car with those properties set and a car with those properties set and a
valid valid toStringtoString()() method that reports method that reports valid valid toStringtoString()() method that reports method that reports

the state.the state.

16

Custom Objects in JSCustom Objects in JS

•• Solution:Solution:

function makeCar(make, model, color) {
var result = new Object();
result.make = make;
result.model = model;
result.color = color;
result.toString = function() {

// on next slide

17

// on next slide
}
return result;

}

Custom Objects in JSCustom Objects in JS

•• Solution:Solution:

result.toString = function() {
var str = "";
for (property in this) {

if (typeof this[property] != "function")
str += property + ": " +

this[property] + "\n";
}

18

}
return str;

}

Custom Objects in JSCustom Objects in JS

•• Solution:Solution:

result.toString = function() {
var str = "";
for (property in this) {

if (typeof this[property] != "function")
str += property + ": " +

this[property] + "\n";
}

19

}
return str;

} Prevents us from seeing
the code of the toString
function itself.

Custom Objects in JSCustom Objects in JS

•• Solution:Solution:

var car = makeCar("Chevy", "Corvette", "red");
alert(car);

Automatically calls

20

Automatically calls
the toString method.

Custom Objects in JSCustom Objects in JS

•• Let’s improve our objectLet’s improve our object

•• What we want is to create a car object What we want is to create a car object
using the keyword using the keyword newnew::

var car = new Car("Chevy", "Corvette", "red");
alert(car);

•• Change the name and structure of Change the name and structure of
makeCarmakeCar..

21

Custom Objects in JSCustom Objects in JS

•• Let’s improve our object!Let’s improve our object!

function Car(make, model, color)
{

this.make = make;
this.model = model;
this.color = color;
this.toString = function()
{

22

{
// same code as before

}
}

Custom Objects in JSCustom Objects in JS

•• Let’s improve our object!Let’s improve our object!
Name of the function has
changed to conform to
naming conventions.

function Car(make, model, color)
{

this.make = make;
this.model = model;
this.color = color;
this.toString = function()
{

naming conventions.

Get rid of creating an
object and instead assign
everything into this.

23

{
// same code as before

}
} Notice, no return value

whatsoever. We’ve
build a constructor.

Custom Objects in JSCustom Objects in JS

•• One final improvementOne final improvement

•• Each car we build has its Each car we build has its ownown deep deep
copy of the copy of the toStringtoString function. It function. It

would be better if there were one would be better if there were one
sharedshared shallow copy of the function.shallow copy of the function.

•• Use Use prototypesprototypes to create shared code to create shared code •• Use Use prototypesprototypes to create shared code to create shared code
in an object.in an object.

24

Custom Objects in JSCustom Objects in JS

•• One final improvementOne final improvement

function Car(make, model, color) {
this.make = make;
this.model = model;
this.color = color;

}

Car.prototype.toString = function() {

25

Car.prototype.toString = function() {
// same code as before

}

Custom Objects in JSCustom Objects in JS

•• One final improvementOne final improvement

function Car(make, model, color) {
this.make = make;
this.model = model;
this.color = color;

}

Car.prototype.toString = function() {

prototype is a property of

every function (remember,
functions are objects too).

26

Car.prototype.toString = function() {
// same code as before

}

Custom Objects in JSCustom Objects in JS

•• What is What is prototypeprototype??

•• Every constructor function has a Every constructor function has a
property called property called prototypeprototype..

•• Anything assigned into Anything assigned into prototypeprototype is is

automatically received by every object automatically received by every object
constructed with that function.constructed with that function.constructed with that function.constructed with that function.

27

Custom Objects in JSCustom Objects in JS

•• ExEx: A : A deep deep array copyarray copy

Array.prototype.clone = function() {
var result = new Array(this.length);
for (i in this) {

if (this[i] instanceof Array)
result[i] = this[i].clone();

else

result[i] = this[i];

28

}
return result;

}
var arr1 = [1, [2, 3, 4], [5, 6, 7, [8]]];
var arr2 = arr1.clone(); // make a deep copy

Custom Objects in JSCustom Objects in JS

•• ExEx: A : A deep deep array copyarray copy

Array.prototype.clone = function() {
var result = new Array(this.length);
for (i in this) {

if (this[i] instanceof Array)
result[i] = this[i].clone();

else

result[i] = this[i];
clone is now a function that

can be called on all arrays,

29

}
return result;

}
var arr1 = [1, [2, 3, 4], [5, 6, 7, [8]]];
var arr2 = arr1.clone(); // make a deep copy

can be called on all arrays,
even those created before this
code was executed.

Custom Objects in JSCustom Objects in JS

•• What is What is prototypeprototype??

•• Its an object, and a property of the Its an object, and a property of the
constructor function. As an object, it constructor function. As an object, it
can have data and functions within it.can have data and functions within it.

•• All instances share the prototype, and All instances share the prototype, and
thus any functions within it.thus any functions within it.thus any functions within it.thus any functions within it.

30

Custom Objects in JSCustom Objects in JS

•• Benefits of what we’ve done:Benefits of what we’ve done:

•• Can reuse the code many times for Can reuse the code many times for
many different many different CarCar objects.objects.

var car1 = new Car("Toyota", "Prius", "blue");
var car2 = new Car("Chevy", "Corvette", "red");
alert(car1);

31

alert(car1);
alert(car2);

Custom Objects in JSCustom Objects in JS

•• Benefits of what we’ve done:Benefits of what we’ve done:

•• Can reuse the code many times for Can reuse the code many times for
many different many different CarCar objects.objects.

•• All the data and functions for a All the data and functions for a CarCar are are

kept in one single unit.kept in one single unit.

•• All All CarCar objects share their objects share their toStringtoString•• All All CarCar objects share their objects share their toStringtoString
method (i.e. only one copy exists in method (i.e. only one copy exists in
memory).memory).

32

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 13, Part 04Week 13, Part 04

33

ObjectObject--Oriented BenefitsOriented Benefits

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Increased modularityIncreased modularity: the unit of : the unit of
modularity becomes the object and modularity becomes the object and
systems become a set of cooperating systems become a set of cooperating
objects. Objects are typically smaller, objects. Objects are typically smaller, objects. Objects are typically smaller, objects. Objects are typically smaller,
and therefore there are more modules.and therefore there are more modules.

34

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Simplified analysisSimplified analysis: The real world : The real world
consists of objects. In the real world, consists of objects. In the real world,
objects have attributes and behaviors. objects have attributes and behaviors.
When the method of programming and When the method of programming and When the method of programming and When the method of programming and
the real world align, then the process the real world align, then the process
of analyzing the problem becomes of analyzing the problem becomes
simpler.simpler.

35

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Easier testingEasier testing: With increased : With increased
modularity (i.e. smaller, more tightly modularity (i.e. smaller, more tightly
focused objects) comes easier testing focused objects) comes easier testing
of those objects. Tests can be written of those objects. Tests can be written of those objects. Tests can be written of those objects. Tests can be written
to validate the behavior of each object to validate the behavior of each object
independently of the entire system.independently of the entire system.

36

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Increased comprehensionIncreased comprehension: Since : Since
objects are kept small (on the order of objects are kept small (on the order of
perhaps a couple of hundred lines of perhaps a couple of hundred lines of
code) programmers are better able to code) programmers are better able to code) programmers are better able to code) programmers are better able to
keep the entire state of the object in keep the entire state of the object in
their working memory at once. their working memory at once.

37

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Looser couplingLooser coupling: : CouplingCoupling is a is a
measure of the degree to which a class measure of the degree to which a class
depends on other classes to work depends on other classes to work
properly. It is rare that an object acts properly. It is rare that an object acts properly. It is rare that an object acts properly. It is rare that an object acts
in isolation of other objects, the in isolation of other objects, the
connections between objects are connections between objects are
clearly defined by the methods.clearly defined by the methods.

38

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Tighter cohesionTighter cohesion: : CohesionCohesion is a is a
measure of the degree to which a class measure of the degree to which a class
models a single concept. Objects are models a single concept. Objects are
smaller modules of modeling than smaller modules of modeling than smaller modules of modeling than smaller modules of modeling than
those found in nonthose found in non--object oriented object oriented
systems, and hence tend to promote systems, and hence tend to promote
tighter cohesion.tighter cohesion.

39

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Increased reuseIncreased reuse: Because objects : Because objects
are loosely coupled and highly are loosely coupled and highly
cohesive, they are easier to reuse cohesive, they are easier to reuse
within the same or different systems.within the same or different systems.within the same or different systems.within the same or different systems.

40

ObjectObject--Oriented BenefitsOriented Benefits

•• Many benefits to grouping data and Many benefits to grouping data and
methods together:methods together:methods together:methods together:

•• Better maintainabilityBetter maintainability: All of the : All of the
aforementioned benefits lead to aforementioned benefits lead to
systems that are much more flexible to systems that are much more flexible to
change and much easier to fix when change and much easier to fix when change and much easier to fix when change and much easier to fix when
bugs are encountered.bugs are encountered.

41

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 13, Part 05Week 13, Part 05

42

The 5 Pillars of OOPThe 5 Pillars of OOP

The 5 Pillars of OOPThe 5 Pillars of OOP

•• Five key concepts in OOPFive key concepts in OOP

•• CCompositionomposition

•• AAbstractionbstraction

•• PPolymorphismolymorphism

•• IInheritancenheritance

•• EEncapsulationncapsulation

43

The 5 Pillars of OOPThe 5 Pillars of OOP

•• Five key concepts in OOPFive key concepts in OOP

•• CCompositionomposition

•• AAbstractionbstraction

•• PPolymorphismolymorphism

•• IInheritancenheritance

This week

•• EEncapsulationncapsulation

44

The 5 Pillars of OOPThe 5 Pillars of OOP

•• Five key concepts in OOPFive key concepts in OOP

•• CCompositionomposition

•• AAbstractionbstraction

•• PPolymorphismolymorphism

•• IInheritancenheritance
Not covered �

•• EEncapsulationncapsulation

45

The 5 Pillars of OOPThe 5 Pillars of OOP

•• AbstractionAbstraction

•• Process of reading a realProcess of reading a real--world world
problem description and figuring out problem description and figuring out
how to model it using objects, how to model it using objects,
methods, and properties.methods, and properties.

46

The 5 Pillars of OOPThe 5 Pillars of OOP

•• AbstractionAbstraction

•• Nouns can become objects or Nouns can become objects or
properties.properties.

•• Verbs can become methods.Verbs can become methods.

47

The 5 Pillars of OOPThe 5 Pillars of OOP

•• AbstractionAbstraction

•• Try it: “A calculator consists of several Try it: “A calculator consists of several
buttons for entering numbers and buttons for entering numbers and
several more buttons for entering several more buttons for entering
operations on those numbers. Valid operations on those numbers. Valid
arithmetic operations are add, arithmetic operations are add, arithmetic operations are add, arithmetic operations are add,
subtract, multiply, and divide. The subtract, multiply, and divide. The
equals button displays the current equals button displays the current
result.”result.”

48

The 5 Pillars of OOPThe 5 Pillars of OOP

•• AbstractionAbstraction

•• ObjectsObjects: calculator: calculator

•• PropertiesProperties: current result, buttons: current result, buttons

••MethodsMethods: add, subtract, multiply, : add, subtract, multiply,
divide, equalsdivide, equals

49

The 5 Pillars of OOPThe 5 Pillars of OOP

•• Composition/AggregationComposition/Aggregation

•• Using one or more objects as Using one or more objects as
properties within another object (i.e. properties within another object (i.e.
objects within objects).objects within objects).

•• Called the “hasCalled the “has--a” relationship.a” relationship.

•• Not unusual at all (strings are objects, Not unusual at all (strings are objects, •• Not unusual at all (strings are objects, Not unusual at all (strings are objects,
and they were properties of our and they were properties of our CarCar
object built previously).object built previously).

50

The 5 Pillars of OOPThe 5 Pillars of OOP

•• Composition/AggregationComposition/Aggregation

•• Two forms of “hasTwo forms of “has--a”a”

••AggregationAggregation: : the two objects can exist the two objects can exist
independently of one another, but happen independently of one another, but happen
to be connectedto be connected. . Ex: classes and studentsEx: classes and students

••CompositionComposition: : a “wholea “whole--part” relationship part” relationship ••CompositionComposition: : a “wholea “whole--part” relationship part” relationship
where the contained object can’t where the contained object can’t
reasonably exist apart from the containerreasonably exist apart from the container. .
Ex: students and dates of birthEx: students and dates of birth

51

The 5 Pillars of OOPThe 5 Pillars of OOP

•• CompositionComposition

•• Try it: Show the relationships between Try it: Show the relationships between
CompactDiscCompactDisc, , TrackTrack, , ArtistArtist, and , and
LabelLabel..

52

The 5 Pillars of OOPThe 5 Pillars of OOP

•• CompositionComposition

•• Try it: Show the relationships between Try it: Show the relationships between
CompactDiscCompactDisc, , TrackTrack, , ArtistArtist, and , and
LabelLabel..

53

The 5 Pillars of OOPThe 5 Pillars of OOP

•• CompositionComposition

•• Try it: Show the relationships between Try it: Show the relationships between
CompactDiscCompactDisc, , TrackTrack, , ArtistArtist, and , and
LabelLabel..

Composition: Filled diamond.
Tracks don’t exist separately
from discs (i.e. tracks “are a
part of” a disc).

54

The 5 Pillars of OOPThe 5 Pillars of OOP

•• CompositionComposition
Aggregation: Hollow diamond.

•• Try it: Show the relationships between Try it: Show the relationships between
CompactDiscCompactDisc, , TrackTrack, , ArtistArtist, and , and
LabelLabel..

Aggregation: Hollow diamond.
Artists exist as an entity
separate from discs. But a
disc “has an” artist.

55

The 5 Pillars of OOPThe 5 Pillars of OOP

•• EncapsulationEncapsulation

•• Hiding the implementation details of Hiding the implementation details of
an object (i.e. the properties and code) an object (i.e. the properties and code)
behind a simple behind a simple interfaceinterface defined by defined by
the methods.the methods.

•• Ex: String objects. Don’t know how Ex: String objects. Don’t know how •• Ex: String objects. Don’t know how Ex: String objects. Don’t know how
they work internally, but we have a they work internally, but we have a
well defined interface through the API.well defined interface through the API.

56

The 5 Pillars of OOPThe 5 Pillars of OOP

•• EncapsulationEncapsulation

•• Try it: A television is a well Try it: A television is a well
encapsulated realencapsulated real--world object. What world object. What
is its interface?is its interface?

57

The 5 Pillars of OOPThe 5 Pillars of OOP

•• EncapsulationEncapsulation

•• Try it: A television is a well Try it: A television is a well
encapsulated realencapsulated real--world object. What world object. What
is its interface?is its interface?

•• Simplest interface: Channel up, Simplest interface: Channel up,
channel down, volume up, volume channel down, volume up, volume channel down, volume up, volume channel down, volume up, volume
down, power down, power toggle, mute (maybe).toggle, mute (maybe).

58

The 5 Pillars of OOPThe 5 Pillars of OOP

•• EncapsulationEncapsulation

•• Try it: A television is a well Try it: A television is a well
encapsulated realencapsulated real--world object. What world object. What
is its interface?is its interface?

•• Simplest interface: Channel up, Simplest interface: Channel up,
channel down, volume up, volume channel down, volume up, volume channel down, volume up, volume channel down, volume up, volume
down, power down, power toggle, mute (maybe).toggle, mute (maybe).

59

The 5 Pillars of OOPThe 5 Pillars of OOP

Interface
Implementation

60

The 5 Pillars of OOPThe 5 Pillars of OOP

Interface
Implementation

Encapsulated

Exposed

Encapsulated

61

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 13, 13, Part 06Part 06

62

Exception handlingException handling

Exception HandlingException Handling

•• How do errors get processed?How do errors get processed?

•• Old way: lots of if/else cases, checking Old way: lots of if/else cases, checking
the return values of functionsthe return values of functions

•• Functions return Functions return truetrue if everything went if everything went

as expected.as expected.

•• Functions return Functions return falsefalse if something went if something went •• Functions return Functions return falsefalse if something went if something went

wrong.wrong.

•• Problem: detecting vs. correctingProblem: detecting vs. correcting

63

Exception HandlingException Handling

•• Detecting vs. correctingDetecting vs. correcting

•• Can usually Can usually detect detect the error in one the error in one
section of code, but not be able to section of code, but not be able to
correctcorrect it in the same place.it in the same place.

•• CalleeCallee function can detectfunction can detect

•• Caller function can correctCaller function can correct•• Caller function can correctCaller function can correct

•• How does the error get communicated How does the error get communicated
from the from the calleecallee to the caller?to the caller?

64

Exception HandlingException Handling

•• Detecting errorsDetecting errors

HourlyEmployee.prototype.setHoursWorked = function(hours)
{

// Impossible number of hours.
if (hours < 0 || hours > 24*7) {

// what to do here?
}
else { Can detect a bad

65

else {
this.hoursWorked = hours;

}
}

Can detect a bad
parameter here, but
can’t correct for it.

Exception HandlingException Handling

•• Detecting errors: solutionDetecting errors: solution

HourlyEmployee.prototype.setHoursWorked = function(hours)
{

// Impossible number of hours.
if (hours < 0 || hours > 24*7) {

throw "Bad parameter for hours: " + hours;
}
else { “throw” an error back

66

else {
this.hoursWorked = hours;

}
}

“throw” an error back
to the caller. Execution
immediately stops. You
can throw any object.

Exception HandlingException Handling

•• Correcting errorsCorrecting errors

var emp = new HourlyEmployee();
var hours = parseInt(prompt("Enter hours worked"));
emp.setHoursWorked(hours);

How do we handle
a potential bad
input here?

67

Exception HandlingException Handling

•• Correcting errors: solutionCorrecting errors: solution

var emp = new HourlyEmployee();
var done = false;
while (!done) {

done = true;
var hours = parseInt(prompt("Enter hours worked"));
try {

emp.setHoursWorked(hours);
Handling the

68

emp.setHoursWorked(hours);
} catch (exception) {

alert(exception);
done = false;

}
}

Handling the
exception means
another trip
through the loop.

Exception HandlingException Handling

•• Try/catch/finally syntaxTry/catch/finally syntax

try {
// code here that may throw an exception

}
catch (exception) {

// do something to fix the error
}
finally {

69

finally {
// code here is always executed regardless of
// whether an exception is thrown/caught or not.

}

Exception HandlingException Handling

•• Exception objectsException objects
-message

Exception

•• Can throw any kind of Can throw any kind of
object.object.

•• Different object types Different object types
can permit us to can permit us to
distinguish between distinguish between

+toString()

message

InputException

distinguish between distinguish between
different error different error
conditions in conditions in a a catchcatch
block.block.

70

IllegalStateException

Exception HandlingException Handling

•• Throwing exceptions, revisedThrowing exceptions, revised

HourlyEmployee.prototype.setHoursWorked = function(hours)
{

if (hours < 0 || hours > 24*7) {
throw new IllegalArgumentException(

"Bad parameter for hours: " + hours);
}

A custom object

71

else {
this.hoursWorked = hours;

}
}

A custom object
that captures the
message and the
type of error.

Exception HandlingException Handling

•• Catching exceptions, revisedCatching exceptions, revised

try {
emp.setHoursWorked(hours);

}
catch (ex) {

log.debug(exception);
if (ex instanceof IllegalArgumentException) {

Using custom exception objects
permits more choices of
corrective action based on the
type of exception.

72

// correct this kind of error
} else if (ex instanceof FoolishUserException) {

// correct another kind of error
} //.. and so on

}

Exception HandlingException Handling

•• Flow of controlFlow of control

•• Code is executing normallyCode is executing normally

•• An exception is thrown, terminating An exception is thrown, terminating
the current function.the current function.

•• The exception keeps propagating up The exception keeps propagating up
the call stack until a try/catch block is the call stack until a try/catch block is the call stack until a try/catch block is the call stack until a try/catch block is
foundfound

73

Exception HandlingException Handling

•• Flow of controlFlow of control

•• Catch block is executedCatch block is executed

•• Finally block is executedFinally block is executed

74

Questions?Questions?

75

Next WeekNext Week

•• Testing and debuggingTesting and debugging

•• A more thorough approachA more thorough approach

76

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week Week 13, 13, Part Part 0707

77

Self QuizSelf Quiz

Self QuizSelf Quiz

•• Name the 5 pillars of objectName the 5 pillars of object--oriented oriented
programming. Define 3 of them.programming. Define 3 of them.programming. Define 3 of them.programming. Define 3 of them.

•• Explain four of the eight benefits of Explain four of the eight benefits of
objectobject--orientation stated in the orientation stated in the
slides.slides.

•• What keyword permits you to access What keyword permits you to access
properties of an object from within a properties of an object from within a
method of that object?method of that object?

78

Self QuizSelf Quiz

•• How is a constructor different from How is a constructor different from
other functions?other functions?other functions?other functions?

•• How do you write code such that How do you write code such that
methods are methods are sharedshared between between
objects generated from the same objects generated from the same
constructor?constructor?constructor?constructor?

79

Self QuizSelf Quiz

•• What is the difference between What is the difference between
composition and aggregation?composition and aggregation?composition and aggregation?composition and aggregation?

•• Why is it important to separate the Why is it important to separate the
implementation of an object from its implementation of an object from its
interface? What “pillar” is this?interface? What “pillar” is this?

80

Self QuizSelf Quiz

•• Give two reasons that exceptions Give two reasons that exceptions
are useful in programming.are useful in programming.are useful in programming.are useful in programming.

•• What keyword lets you alter the flow What keyword lets you alter the flow
of control in a function by of control in a function by
generating an exception?generating an exception?

•• What keyword(s) lets you handle an What keyword(s) lets you handle an
exception?exception?

81

Self QuizSelf Quiz

•• Write a constructor for a Book object Write a constructor for a Book object
that takes a title, author, and ISBN that takes a title, author, and ISBN that takes a title, author, and ISBN that takes a title, author, and ISBN
as parameters. It should make as parameters. It should make
properties out of each parameter.properties out of each parameter.

•• Write a constructor for a Library Write a constructor for a Library
object (no parameters). It should object (no parameters). It should object (no parameters). It should object (no parameters). It should
create an empty array to hold create an empty array to hold
books.books.

82

Self QuizSelf Quiz

•• Write methods for the Library object Write methods for the Library object
that will allow you tothat will allow you tothat will allow you tothat will allow you to

•• Add a book to the collectionAdd a book to the collection

•• Look up a book by authorLook up a book by author

•• Look up a book by titleLook up a book by title

•• Look up a book by ISBNLook up a book by ISBN

83

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 13, Part Week 13, Part 0808

84

Upcoming deadlinesUpcoming deadlines

Upcoming DeadlinesUpcoming Deadlines

•• Due April 6Due April 6

•• PrePre--class exercise class exercise 1414

•• Homework Homework 1111

•• Due April 13Due April 13

•• Homework 12 (optional)Homework 12 (optional)

85

•• Homework 12 (optional)Homework 12 (optional)

•• Lab 4Lab 4

•• Reflection paperReflection paper

•• Final examFinal exam

