
ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part 01Part 01

1

OverviewOverview

Week Week 14 14 OverviewOverview

•• Week Week 13 13 reviewreview

•• What is an object? (three partsWhat is an object? (three parts))

•• State (properties)State (properties)

•• Identity (location in memory)Identity (location in memory)

•• Behavior (methods)Behavior (methods)

2

Week Week 14 14 OverviewOverview

•• Week Week 13 13 reviewreview

•• Custom JS objectsCustom JS objects

•• ConstructorsConstructors

•• thisthis referencereference

•• The The prototypeprototype property of functionsproperty of functions

•• Benefits Benefits of objectof object--orientationorientation

3

•• Benefits Benefits of objectof object--orientationorientation

•• Coupling and cohesion (among othersCoupling and cohesion (among others))

Week 14 Week 14 OverviewOverview

•• Week Week 13 13 reviewreview

•• 3 of the 5 pillars of OOP3 of the 5 pillars of OOP

•• AbstractionAbstraction

•• EncapsulationEncapsulation

•• Composition (code reuse, 2 kindsComposition (code reuse, 2 kinds))

4

Week 14 Week 14 OverviewOverview

•• Week Week 13 13 reviewreview

•• Exception handlingException handling

•• Detection and correction of errors are at Detection and correction of errors are at
different places in code.different places in code.

•• Exceptions communicate between those Exceptions communicate between those
places and alter the flow of executionplaces and alter the flow of execution

5

places and alter the flow of executionplaces and alter the flow of execution

•• throwthrow keywordkeyword

•• trytry//catchcatch//finallyfinally blocksblocks

Week 14 OverviewWeek 14 Overview

•• OutcomesOutcomes

•• Select necessary and sufficient test Select necessary and sufficient test
cases.cases.

•• Use a debugger to examine a running Use a debugger to examine a running
program.program.

•• Correct runtime errors through a Correct runtime errors through a •• Correct runtime errors through a Correct runtime errors through a
debugger.debugger.

6

Week 14 Week 14 OverviewOverview

•• OutcomesOutcomes

•• Select necessary and sufficient test Select necessary and sufficient test
cases.cases.

•• Use a debugger to examine a running Use a debugger to examine a running
program.program.

•• Correct runtime errors through a Correct runtime errors through a

7

•• Correct runtime errors through a Correct runtime errors through a
debugger.debugger.

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part 02Part 02

8

Testing ConceptsTesting Concepts

Testing ConceptsTesting Concepts

•• Testing in the SDLCTesting in the SDLC

9

Testing ConceptsTesting Concepts

•• Validation vs. verificationValidation vs. verification

•• Validation: A comparison of the system Validation: A comparison of the system
behavior against what the user actually behavior against what the user actually
needs. “Have we build the right needs. “Have we build the right
software?”software?”

10

Testing ConceptsTesting Concepts

•• Validation vs. verificationValidation vs. verification

•• Validation: A comparison of the system Validation: A comparison of the system
behavior against what the user actually behavior against what the user actually
needs. “Have we build the right needs. “Have we build the right
software?”software?”

Primarily the work of

11

Primarily the work of
business analysts and
designers. Critical to real-
world software success.

Testing ConceptsTesting Concepts

•• Validation vs. verificationValidation vs. verification

•• Validation: A comparison of the system Validation: A comparison of the system
behavior against what the user actually behavior against what the user actually
needs. “Have we build the right needs. “Have we build the right
software?”software?”

•• Verification: A comparison of system Verification: A comparison of system •• Verification: A comparison of system Verification: A comparison of system
behavior against the specification. behavior against the specification.
“Have we built the software right?”“Have we built the software right?”

12

Testing ConceptsTesting Concepts

•• Validation vs. verificationValidation vs. verification

•• Validation: A comparison of the system Validation: A comparison of the system
behavior against what the user actually behavior against what the user actually
needs. “Have we build the right needs. “Have we build the right
software?”software?”

•• Verification: A comparison of system Verification: A comparison of system •• Verification: A comparison of system Verification: A comparison of system
behavior against the specification. behavior against the specification.
“Have we built the software right?”“Have we built the software right?”

13

Testing ConceptsTesting Concepts

•• Validation vs. verificationValidation vs. verification

•• Validation: A comparison of the system Validation: A comparison of the system
behavior against what the user actually behavior against what the user actually
needs. “Have we build the right needs. “Have we build the right
software?”software?”

•• Verification: A comparison of system Verification: A comparison of system

Primarily the work of software
and quality assurance
engineers. What most people
think of when you say “testing.”
Our focus this week.

•• Verification: A comparison of system Verification: A comparison of system
behavior against the specification. behavior against the specification.
“Have we built the software right?”“Have we built the software right?”

14

Testing ConceptsTesting Concepts

•• Types of testingTypes of testing

•• Unit testingUnit testing: A function or object : A function or object
designed to test the behavior of a designed to test the behavior of a
another function or object.another function or object.

•• Operates in isolation of other objects.Operates in isolation of other objects.

•• Provide known inputs to check against Provide known inputs to check against •• Provide known inputs to check against Provide known inputs to check against
known outputs.known outputs.

•• Group together into a test suite.Group together into a test suite.

15

Testing ConceptsTesting Concepts

•• Test driven developmentTest driven development

•• If testing is good, then why not do it If testing is good, then why not do it
continuously?continuously?

Write a test case for
new behavior

Clean up (refactor)
the design

16

Run all tests
(watching new

test fail)

Write code to make
new test case pass

Debug any
new test case

failures.

Testing ConceptsTesting Concepts

•• Types of testingTypes of testing

•• Integration testingIntegration testing: verifies the : verifies the
behavior of larger groupings of behavior of larger groupings of
modules.modules.

•• Done after unit testing of each component Done after unit testing of each component
part, yet before system testing.part, yet before system testing.part, yet before system testing.part, yet before system testing.

•• Exposes interface, design problemsExposes interface, design problems

17

Testing ConceptsTesting Concepts

•• Types of testingTypes of testing

•• System testingSystem testing: testing of the entire : testing of the entire
system assembled from major system assembled from major
modules.modules.

•• Done after integration testingDone after integration testing

•• Load, security, stress, performance, Load, security, stress, performance, •• Load, security, stress, performance, Load, security, stress, performance,
reliability, etc.reliability, etc.

18

Testing ConceptsTesting Concepts

•• Types of testingTypes of testing

•• Acceptance testingAcceptance testing: performed by : performed by
subject matter experts just prior to subject matter experts just prior to
release. Last chance for bug finding.release. Last chance for bug finding.

•• Done after system testing.Done after system testing.

•• Sometimes called Sometimes called betabeta testing.testing.•• Sometimes called Sometimes called betabeta testing.testing.

•• Binary decision (go/no go for release).Binary decision (go/no go for release).

19

Testing ConceptsTesting Concepts

•• Types of testingTypes of testing

•• Regression testingRegression testing: re: re--running old running old
test cases after every bug fix to ensure test cases after every bug fix to ensure
that the fix introduced no new bugs.that the fix introduced no new bugs.

•• Prevents Prevents cyclingcycling of bugs.of bugs.

•• Acts as a safety net.Acts as a safety net.•• Acts as a safety net.Acts as a safety net.

•• Permits refactoring (redesign of existing Permits refactoring (redesign of existing
code) while maintaining quality.code) while maintaining quality.

20

Testing ConceptsTesting Concepts

•• BlackBlack-- vs. whitevs. white--box testingbox testing

•• BlackBlack--box testingbox testing: treats the item : treats the item
under test as a black box, providing under test as a black box, providing
only inputs (both valid and invalid) and only inputs (both valid and invalid) and
checking outputs. Does not exploit checking outputs. Does not exploit
internal knowledge of how the code internal knowledge of how the code internal knowledge of how the code internal knowledge of how the code
works.works.

21

Testing ConceptsTesting Concepts

•• BlackBlack-- vs. whitevs. white--box testingbox testing

••WhiteWhite--box testingbox testing: testing all paths : testing all paths
through the software using carefully through the software using carefully
crafted inputs (both valid and invalid).crafted inputs (both valid and invalid).

•• Critical to achieve a high degree of Critical to achieve a high degree of test test
coveragecoverage, i.e. the percentage of lines of , i.e. the percentage of lines of coveragecoverage, i.e. the percentage of lines of , i.e. the percentage of lines of
code exercised by the tests.code exercised by the tests.

22

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part 03Part 03

23

Applied Unit TestingApplied Unit Testing

Applied Unit TestingApplied Unit Testing

•• Unit tests mustUnit tests must

•• Be quick and easy to writeBe quick and easy to write

•• Run in an automated wayRun in an automated way

•• Provide value to the programmerProvide value to the programmer

•• MethodMethod•• MethodMethod

•• Provide inputsProvide inputs

•• Validate outputsValidate outputs

24

Applied Unit TestingApplied Unit Testing

•• How do we test this:How do we test this:

function absoluteValue(number)

{

if (number < 0)

return -number;

25

return -number;

return number;

}

Applied Unit TestingApplied Unit Testing

•• How do we test this:How do we test this:

•• Simple way:Simple way:

function testAbsoluteValueFunction()

{

if (5 != absoluteValue(-5))

alert("failed test 1");

26

alert("failed test 1");

if (5 != absoluteValue(5))

alert("failed test 2")

}

Applied Unit TestingApplied Unit Testing

•• How do we test this:How do we test this:

•• Simple way:Simple way:

function testAbsoluteValueFunction()

{

if (5 != absoluteValue(-5))

alert("failed test 1");

Advantages:
• Simple.
• Can be used for
regression testing.

27

alert("failed test 1");

if (5 != absoluteValue(5))

alert("failed test 2")

}

Applied Unit TestingApplied Unit Testing

•• How do we test this:How do we test this:

•• Simple way:Simple way:

function testAbsoluteValueFunction()

{

if (5 != absoluteValue(-5))

alert("failed test 1");

Advantages:
• Simple.
• Can be used for
regression testing.

Disadvantages:
• Not easily reused for
other kinds of testing

28

alert("failed test 1");

if (5 != absoluteValue(5))

alert("failed test 2")

}

other kinds of testing
• Too many alerts

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

•• Principles:Principles:

•• Make unit testing easyMake unit testing easy

•• Take away all the repetitive codeTake away all the repetitive code

•• Report errors succinctlyReport errors succinctly

29

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

var tests = new UnitTester();

tests.addTests({

testNegative : function() {

tests.assertEquals(5, absoluteValue(-5));

},

testPositive : function() {

tests.assertEquals(5, absoluteValue(-5));

30

tests.assertEquals(5, absoluteValue(-5));

},

testNonNumber : function() {

tests.assertEquals("NaN", "" + absoluteValue("x"));

}

});

tests.runTests();

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

var tests = new UnitTester();

tests.addTests({

testNegative : function() {

tests.assertEquals(5, absoluteValue(-5));

},

testPositive : function() {

tests.assertEquals(5, absoluteValue(-5));

Expected answer

Actual answer

31

tests.assertEquals(5, absoluteValue(-5));

},

testNonNumber : function() {

tests.assertEquals("NaN", "" + absoluteValue("x"));

}

});

tests.runTests();

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

function FailedTest(expected, actual) {

this.expected = expected;

this.actual = actual;

}

FailedTest.prototype.toString = function() {

return "expected: " + this.expected +

32

return "expected: " + this.expected +

", actual: " + this.actual;

}
A failed test throws a
FailedTest exception

capturing how it failed.

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

function UnitTester() {

this.allTests = new Object();

this.failures = [];

}

UnitTester.prototype.assertEquals = function(

expected, actual) {

Compares
expected and
actual values.

33

expected, actual) {

if (expected.equals && !expected.equals(actual))

throw new FailedTest(expected, actual);

else if (!(expected == actual))

throw new FailedTest(expected, actual);

}

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

UnitTester.prototype.addTests = function(manyTests)

{

for (index in manyTests) {

this.addTest(index, manyTests[index]);

}

}

34

UnitTester.prototype.addTest = function(name, test)

{

this.allTests[name] = test;

}
Sets up test
functions to run.

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

UnitTester.prototype.runTests = function() {

for (var index in this.allTests) {

if (this.allTests[index] instanceof Function) {

try {

this.allTests[index]();

}

catch (exception) {

Actually runs the test
functions

35

catch (exception) {

this.failures.push(index + ": " + exception);

}

}

}

alert(this.makeResultsString());

}

Applied Unit TestingApplied Unit Testing

•• Building a unit testing Building a unit testing frameworkframework

UnitTester.prototype.makeResultsString = function()

{

var str = "";

for (var index in this.failures)

{

str += this.failures[index] + "\n";

}

36

}

if (str == "")

return "All tests passed.";

return str;

}

Produces the results.

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part 04Part 04

37

Selecting Test CasesSelecting Test Cases

Selecting Test CasesSelecting Test Cases

•• Test coverageTest coverage
•• Making sure that all parts of your Making sure that all parts of your •• Making sure that all parts of your Making sure that all parts of your
program are exercised by the test program are exercised by the test
cases.cases.
•• Every direction of nested if/else structuresEvery direction of nested if/else structures

•• Every possible case in a switch statementEvery possible case in a switch statement

•• Every possible way a loop can be runEvery possible way a loop can be run•• Every possible way a loop can be runEvery possible way a loop can be run
•• Never iterating (preNever iterating (pre--test only)test only)

•• Iterating onceIterating once

•• Iterating many timesIterating many times

38

Selecting Test CasesSelecting Test Cases

•• Test coverageTest coverage
•• Making sure that all kinds of data are Making sure that all kinds of data are •• Making sure that all kinds of data are Making sure that all kinds of data are
testedtested
•• An “expected” test caseAn “expected” test case

•• “Corner” cases“Corner” cases

•• Illegal inputsIllegal inputs

39

Selecting Test CasesSelecting Test Cases

•• Test coverageTest coverage
•• Ex: calculating square rootsEx: calculating square roots•• Ex: calculating square rootsEx: calculating square roots

•• Expected inputs: numbers from [1…n]Expected inputs: numbers from [1…n]

•• Corner cases: 0, [0…1]Corner cases: 0, [0…1]

•• Illegal inputs: negative numbersIllegal inputs: negative numbers

40

Applied Unit TestingApplied Unit Testing

•• Try it:Try it:

•• Write Write test cases using the testing test cases using the testing
framework to determine if framework to determine if your your
merge()merge() function (which merges two function (which merges two

separately sorted arrays) works separately sorted arrays) works on on
many different data sets.many different data sets.many different data sets.many different data sets.

41

Applied Unit TestingApplied Unit Testing

•• Try it:Try it:

•• Write Write test cases using the testing test cases using the testing
framework to determine framework to determine if a sorting if a sorting
algorithm actually sorts arrays.algorithm actually sorts arrays.

42

Applied Unit TestingApplied Unit Testing

•• Try it:Try it:

•• Write a function that builds a Write a function that builds a
histogram table at 10% intervals (i.e. histogram table at 10% intervals (i.e.
given an array of data in the range [0, given an array of data in the range [0,
100] output an array with 11 “buckets” 100] output an array with 11 “buckets”
containing the count of elements that containing the count of elements that containing the count of elements that containing the count of elements that
fall in those buckets).fall in those buckets).

•• Write tests to verify that it works.Write tests to verify that it works.

43

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part 05Part 05

44

Debugging ToolsDebugging Tools

Debugging ToolsDebugging Tools

•• Old school approachOld school approach

•• Logging: debugging statements placed Logging: debugging statements placed
strategically in program code.strategically in program code.

function log(div, message) {

document.getElementById(div).innerHTML +=

message + "
";

45

}

// then later...

if (debug == true) {

log("debug", "Got to here");

}

Debugging ToolsDebugging Tools

•• New New school approachschool approach

•• Logging: Logging: use the built in Firebug use the built in Firebug
logging console!logging console!

console.log("This is a log message");

console.info("This is an info message");

console.warn("This is a warn message");

46

console.error("This is an error message");

Debugging ToolsDebugging Tools

•• New New school approachschool approach

•• Logging: Logging: use the built in Firebug use the built in Firebug
logging console!logging console!

console.log("This is a log message");

console.info("This is an info message");

console.warn("This is a warn message");

47

console.error("This is an error message");

Debugging ToolsDebugging Tools

•• DebuggersDebuggers

•• Programs that allow you to examine Programs that allow you to examine
the state of another running program.the state of another running program.

•• Built in to the IDE in which you programBuilt in to the IDE in which you program

•• Stop your program at a particular point Stop your program at a particular point
((breakpointbreakpoint))((breakpointbreakpoint))

•• Inspect the contents of a variable (Inspect the contents of a variable (inspectinspect or or
watchwatch))

•• Step through a program as it executes (Step through a program as it executes (step step
intointo, , step overstep over, , step outstep out).).

48

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session

•• Set a breakpoint in your code just prior Set a breakpoint in your code just prior
to where you think a problem is to where you think a problem is
occurring (i.e. on the line just ahead of occurring (i.e. on the line just ahead of
the one in an exception’s stack trace).the one in an exception’s stack trace).

•• Run the program in debug mode, and Run the program in debug mode, and •• Run the program in debug mode, and Run the program in debug mode, and
the program will stop just ahead of the the program will stop just ahead of the
crashcrash

49

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session

•• Set a breakpoint in your code just prior Set a breakpoint in your code just prior
to where you think a problem is to where you think a problem is
occurring (i.e. on the line just ahead of occurring (i.e. on the line just ahead of
the one in an exception’s stack trace).the one in an exception’s stack trace).

•• Run the program in debug mode, and Run the program in debug mode, and

A breakpoint
set at line 80.

•• Run the program in debug mode, and Run the program in debug mode, and
the program will stop just ahead of the the program will stop just ahead of the
crashcrash

50

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session

•• Examine the variables at that point to Examine the variables at that point to
determine what may have gone wrong. determine what may have gone wrong.
Use the watch or inspect features.Use the watch or inspect features.

•• Step forward through the program to Step forward through the program to
examine how the state of objects examine how the state of objects examine how the state of objects examine how the state of objects
change as the program is executing change as the program is executing
lineline--byby--line.line.

51

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session

•• Examine the variables at that point to Examine the variables at that point to
determine what may have gone wrong. determine what may have gone wrong.
Use the watch or inspect features.Use the watch or inspect features.

•• Step forward through the program to Step forward through the program to
examine how the state of objects examine how the state of objects examine how the state of objects examine how the state of objects
change as the program is executing change as the program is executing
lineline--byby--line.line.

52

The watch window displays
the names and values of
the local variables in the
function

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session

•• Step into Step into –– if on a line with a function if on a line with a function
call, starts debugging that function, call, starts debugging that function,
otherwise just executes the next lineotherwise just executes the next line

•• Step over Step over –– if on a line with a if on a line with a
function call, calls the function (but function call, calls the function (but function call, calls the function (but function call, calls the function (but
doesn’t debug it), otherwise just doesn’t debug it), otherwise just
executes the next line.executes the next line.

53

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session

•• Step Step out out –– runs the current function runs the current function
to completion, resumes debugging at to completion, resumes debugging at
the point at which the function was the point at which the function was
called.called.

•• ContinueContinue –– runs to the next runs to the next •• ContinueContinue –– runs to the next runs to the next
breakpoint.breakpoint.

54

Debugging ToolsDebugging Tools

•• Typical debugging sessionTypical debugging session
Step into Step out•• Step Step out out –– runs the current function runs the current function

to completion, resumes debugging at to completion, resumes debugging at
the point at which the function was the point at which the function was
called.called.

•• ContinueContinue –– runs to the next runs to the next Continue

Step into

Step over

Step out

•• ContinueContinue –– runs to the next runs to the next
breakpoint.breakpoint.

55

Continue Step over

Debugging ToolsDebugging Tools

•• Firebug demonstrationFirebug demonstration
•• http://encytemedia.com/blog/articles/2006/05/12/ahttp://encytemedia.com/blog/articles/2006/05/12/a•• http://encytemedia.com/blog/articles/2006/05/12/ahttp://encytemedia.com/blog/articles/2006/05/12/a

nn--inin--depthdepth--looklook--atat--thethe--futurefuture--ofof--javascriptjavascript--
debuggingdebugging--withwith--firebugfirebug

•• http://www.digitalmediaminute.com/screencast/firehttp://www.digitalmediaminute.com/screencast/fire
bugbug--js/js/

56

Questions?Questions?

57

Next WeekNext Week

•• Last class! Last class! ☺☺

•• Final exam! Final exam! ��

58

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part 06Part 06

59

Self QuizSelf Quiz

Self QuizSelf Quiz

•• What is the difference between What is the difference between
validation and verification?validation and verification?validation and verification?validation and verification?

•• Name the five different types of Name the five different types of
testing in the SDLC.testing in the SDLC.

•• Compare and contrast blackCompare and contrast black--box and box and •• Compare and contrast blackCompare and contrast black--box and box and
whitewhite--box testing.box testing.

60

Self QuizSelf Quiz

•• What is the advantage of a unit What is the advantage of a unit
testing framework over some adtesting framework over some ad--hoc hoc testing framework over some adtesting framework over some ad--hoc hoc
approach?approach?

•• Write a function “Write a function “isSortedisSorted” that ” that

returns true if the array given as a returns true if the array given as a
parameter is sorted, and false parameter is sorted, and false parameter is sorted, and false parameter is sorted, and false
otherwise.otherwise.

61

Self QuizSelf Quiz

•• Write a thorough set of test cases Write a thorough set of test cases
for for isSortedisSorted..for for isSortedisSorted..

•• Describe the process of debugging Describe the process of debugging
using a debugger.using a debugger.

•• Describe the process of debugging Describe the process of debugging •• Describe the process of debugging Describe the process of debugging
using a logging facility.using a logging facility.

62

ITEC 136ITEC 136ITEC 136ITEC 136
Business Programming ConceptsBusiness Programming Concepts

Week 14, Week 14, Part Part 0707

63

Upcoming deadlinesUpcoming deadlines

Upcoming DeadlinesUpcoming Deadlines

•• Due April 13Due April 13

•• Homework 12 (optional)Homework 12 (optional)

•• Lab 4Lab 4

•• Reflection paperReflection paper

•• Final examFinal exam

64

