ITEC 136

Business Programming Concepts

Week 14, Part 01
Overview

FRANKLIN UNIVERSITY

FOUNDED 1902
1

Week 14 Overview

e Week 13 review

e What is an object? (three parts)
e State (properties)
e Identity (location in memory)
e Behavior (methods)

FRANKLIN fH
UNIVERSITY [

Week 14 Overview

e Week 13 review

e Custom JS objects

e Constructors

« this reference

* The prototype property of functions
 Benefits of object-orientation

¢ Coupling and cohesion (among others)

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Week 14 Overview

e Week 13 review

e 3 of the 5 pillars of OOP

e Abstraction
e Encapsulation
e Composition (code reuse, 2 kinds)

FRANKLIN *’H
UNIVERSITY [

www . franklin.edu

Week 14 Overview

e Week 13 review

e Exception handling

e Detection and correction of errors are at
different places in code.

» Exceptions communicate between those
places and alter the flow of execution
e throw keyword
e try/catch/finally blocks

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Week 14 Overview

e Qutcomes

e Select necessary and sufficient test
cases.

e Use a debugger to examine a running
program.

e Correct runtime errors through a
debugger.

FRANKLIN *’H
UNIVERSITY [

www . franklin.edu

Week 14 Overview

e OQutcomes

e Select necessary and sufficient test
cases.

e Use a debugger to examine a running
program.

e Correct runtime errors through a
debugger.

FRANKLIN *ﬂ
UNIVERSITY [

www._franklin.edu

ITEC 136

Business Programming Concepts

Week 14, Part 02
Testing Concepts

FRANKLIN UNIVERSITY

FOUNDED 1902

8

Testing Concepts

e Testing in the SDLC

FRANKLIN fH
UNIVERSITY [

www._franklin.edu

Testing Concepts

e Validation vs. verification

e Validation: A comparison of the system
behavior against what the user actually
needs. “Have we build the right
software?”

FRANKLIN FH
UNIVERSITY [

www . franklin.edu

Testing Concepts

e Validation vs. verification

e Validation: A comparison of the system
behavior against what the user actually
needs. “Have we build the right
software?”

Primarily the work of h

business analysts and
designers. Critical to real-
world software success.

N~ " FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Testing Concepts

e Validation vs. verification

e Validation: A comparison of the system
behavior against what the user actually
needs. “Have we build the right
software?”

e Verification: A comparison of system
behavior against the specification.

“Have we built the software right?”

FRANKLIN §
UNIVERSITY [

www . franklin.edu

Testing Concepts

e Validation vs. verification

e Validation: A comparison of the system
behavior against what the user actually
needs. “Have we build the right
software?”

e Verification: A comparison of system
behavior against the specification.

“Have we built the software right?”

FRANKLIN |
UNIVERSITY [

www._franklin.edu

Testing Concepts

e Validation vs. verification

e Validation: A
behavior agai
needs. “Hav
software?”

e Verification: A comparison of system
behavior against the specification.

“Have we built the software right?”

FRANKLIN {
UNIVERSITY [

Primarily the work of software m
and quality assurance

engineers. What most people ”y
think of when you say “testing.”

Our focus this week.

www . franklin.edu

Testing Concepts

e Types of testing

o Unit testing: A function or object
designed to test the behavior of a
another function or object.

e Operates in isolation of other objects.

* Provide known inputs to check against
known outputs.
e Group together into a test suite.

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Testing Concepts

e Test driven development

e If testing is good, then why not do it
continuously?

Clean up (refactor) Write a test case for
the design new behavior

Run all tests
(watching new
test fail)

Debug any
new test cas
failures.

Write code to make FRANKL'N [H
new test case pass UNNERS'TY r

www . franklin.edu

Testing Concepts

e Types of testing

e Integration testing: verifies the
behavior of larger groupings of
modules.

e Done after unit testing of each component
part, yet before system testing.

» Exposes interface, design problems

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Testing Concepts

e Types of testing

o System testing: testing of the entire
system assembled from major
modules.

e Done after integration testing

e Load, security, stress, performance,
reliability, etc.

FRANKLIN *’H
UNIVERSITY [

www . franklin.edu

Testing Concepts

e Types of testing

o Acceptance testing: performed by
subject matter experts just prior to
release. Last chance for bug finding.

* Done after system testing.
e Sometimes called beta testing.
e Binary decision (go/no go for release).

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Testing Concepts

e Types of testing

e Regression testing: re-running old
test cases after every bug fix to ensure
that the fix introduced no new bugs.

e Prevents cycling of bugs.
¢ Acts as a safety net.

» Permits refactoring (redesign of existing
code) while maintaining quality.

FRANKLIN H
UNIVERSITY [

www . franklin.edu

= Testing Concepts

e Black- vs. white-box testing

» Black-box testing: treats the item
under test as a black box, providing
only inputs (both valid and invalid) and
checking outputs. Does not exploit
internal knowledge of how the code
works.

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

= Testing Concepts

e Black- vs. white-box testing

 White-box testing: testing all paths
through the software using carefully

crafted inputs (both valid and invalid).
» Critical to achieve a high degree of fest

coverage, i.e. the percentage of lines of
code exercised by the tests.

FRANKLIN H
UNIVERSITY [

www . franklin.edu

ITEC 136

Business Programming Concepts

Week 14, Part 03
Applied Unit Testing

FRANKLIN UNIVERSITY

FOUNDED 1902
23

Applied Unit Testing

e Unit tests must
e Be quick and easy to write
e Run in an automated way
e Provide value to the programmer

e Method
e Provide inputs
e Validate outputs

UNIVERSITY [

www . franklin.edu

FRANKLIN “H
d

Applied Unit Testing

e How do we test this:

i function absoluteValue(number)
{
if (number < 0)
return -number;
return number;

FRANKLIN §
UNIVERSITY [

www._franklin.edu

Applied Unit Testing

e How do we test this:
e Simple way:

gfunction testAbsoluteValueFunction()
{
: if (5 != absoluteValue(-5))
alert("failed test 1");
if (5 != absoluteValue(5))
alert("failed test 2")

FRANKLIN {
UNIVERSITY [

www . franklin.edu

Applied Unit Testing

e How do we test this:

e Simple way: f\g\lf;";)tlaege&

444444444 * Can beused for | :
; regression testing. :

Efunction testAbsol

{ /

é if (5 != absoluteValue(-5))

§ alert("failed test 1");

f if (5 != absoluteValue(5))

: alert("failed test 2")

)

... FﬁE&qRIjFIF
UNIVERSTTY [

www._franklin.edu

Applied Unit Testing

e How do we test this:
° S|mp|e way: Advantages:

* Simple.
4444 * Can be used for | :
: regression testing. :

gfunction testAbsol

i { Disadvantages:)
if (5 != absolu * Not easily reused for
alert("failed test other kinds of testing
if (5 = abSOIUtevalue(* Too many alerts
: alert("failed test)
P}
FRANKLIN &

UNIVERSITY

www . franklin.edu

Applied Unit Testing

e Building a unit testing framework
e Principles:
* Make unit testing easy

e Take away all the repetitive code
* Report errors succinctly

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Applied Unit Testing

évar tests = new UnitTester();
i tests.addTests({
: testNegative : function() {
tests.assertEquals(5, absoluteValue(-5));
}s
testPositive : function() {
tests.assertEquals(5, absoluteValue(-5));
}s
testNonNumber : function() { g
tests.assertEquals("NaN", "" + absoluteValue("x"));

®
g});

tests.runTests(); .
du

Applied Unit Testing

e Building a unit testing framework

ivar tests = new UnitTester'();[EXpected answer]
i tests.addTests({

testNegative : function
tests.assertEquals(5, absoluteValue(-5));

}s :
testPositive : function() { Actual answer]§
tests.assertEquals(5, absoluteValue(-5)7); :

}s

testNonNumber : function() {
tests.assertEquals("NaN", "" + absoluteValue("x"));

g}); é

tests.runTests(); .
du

Applied Unit Testing

e Building a unit testing framework

éfunction FailedTest(expected, actual) {
; this.expected = expected;
this.actual = actual;

éFailedTest.prototype.toString = function() {
; return "expected: " + this.expected +
", actual: + this.actual;

A failed test throws a
FailedTest exception
capturing how it failed. RANKLIN £

...

www . franklin.edu

Applied Unit Testing

e Building a unit testing framework

§function UnitTester() {

. _ Compares
this.allTests = new Object(); expected and
this.failures = []; actual values.

Un1tTester prototype.assertEquals = function(

expected, actual) {

if (expected.equals && !expected.equals(actual))
throw new FailedTest(expected, actual);

else if (!(expected == actual)) :
throw new FailedTest(expected, actual); §F1

www._franklin.edu

Applied Unit Testing

e Building a unit testing framework

§UnitTester.prototype.addTests = function(manyTests)

{

5 for (index in manyTests) {
this.addTest(index, manyTests[index]);

)
)

SUnitTester.prototype.addTest = function(name, test)
{

: this.allTests[name] = test; Sets up test e
) functions to run. H

orrverort 1 1

www . franklin.edu

Applied Unit Testing

e Building a unit testing framework

SUnitTester.prototype.PunTests = function() {
: for (var index in this.allTests) {
if (this.allTests[index] instanceof Function) {

try { . Actually runs the test |
this.allTests[index](); functions ;
}

catch (exception) {
this.failures.push(index + ": " + exception);

¥
}

:
i alert(this.makeResultsString()); :
)

Applied Unit Testing

e Building a unit testing framework

;UnitTester.prototype.makeResultsString = function()
H
3 var str = "";

for (var index in this.failures)

{

}
if (str == "")

return "All tests passed.";
return str;

) f
R ———— CIRTVERST 'I"T"l':

str += this.failures[index] + "\n";

Produces the results.]

www . franklin.edu

ITEC 136

Business Programming Concepts

Week 14, Part 04
Selecting Test Cases

FRANKLIN UNIVERSITY

FOUNDED 1902

37

Selecting Test Cases

e Test coverage

e Making sure that all parts of your
program are exercised by the test
cases.

e Every direction of nested if/else structures
e Every possible case in a switch statement

e Every possible way a loop can be run
e Never iterating (pre-test only)
e Iterating once

e Iterating many times FRANKLIN r.H
UNIVERSTTY [

www . franklin.edu

Selecting Test Cases

e Test coverage

e Making sure that all kinds of data are
tested

* An “expected” test case
¢ “Corner” cases
e Illegal inputs

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

Selecting Test Cases

e Test coverage

e EX: calculating square roots
e Expected inputs: numbers from [1...n]
e Corner cases: 0, [0...1]
e [llegal inputs: negative numbers

FRANKLIN *’H
UNIVERSITY [

www . franklin.edu

Applied Unit Testing

e Try it:
e Write test cases using the testing
framework to determine if your
merge () function (which merges two

separately sorted arrays) works on
many different data sets.

FRANKLWUF1
UNIVERSITY [

www._franklin.edu

Applied Unit Testing

o Try it:
o Write test cases using the testing

framework to determine if a sorting
algorithm actually sorts arrays.

FRANKLWUF1
UNIVERSITY [

www . franklin.edu

Applied Unit Testing

e Try it:

e Write a function that builds a
histogram table at 10% intervals (i.e.
given an array of data in the range [0,
100] output an array with 11 “buckets”
containing the count of elements that
fall in those buckets).

o Write tests to verify that it works.

FRANKLIN {
UNIVERSITY [

www._franklin.edu

ITEC 136

Business Programming Concepts

Week 14, Part 05
Debugging Tools

FRANKLIN UNIVERSITY

FOUNDED 1902

44

Debugging Tools

e Old school approach

e Logging: debugging statements placed
strategically in program code.

i function log(div, message) {

; document.getElementById(div).innerHTML +=
§ message + "
";

)

t// then later...

tif (debug == true) {

; log("debug", "Got to here");

www._franklin.edu

Debugging Tools

e New school approach

e Logging: use the built in Firebug
logging console!

i console.log("This is a log message");

i console.info("This is an info message");

i console.warn("This is a warn message");
éconsole.error("This is an error message");

FRANKLIN *’H
UNIVERSITY [

www . franklin.edu

= Debugging Tools

e New school approach
e | naaina: use the huilt in Firehua

‘K 1| Console~ | HTML ¢SS Script DOM Net
Clear Persist Profile
¥»> console.log("This is & log message”™); conscle.in...ge™);
congole _error("This i3 an error message™);
This iz & log message
OIhis iz en infoc message sorting.html (line 72)
@This is & Warn message sorting.html (line 73)
ﬂ This is an error message
conscle . warn("This is a warn m age™) ;\n 3 (line 4)
s

www._franklin.edu

= Debugging Tools

e Debuggers
e Programs that allow you to examine
the state of another running program.

e Built in to the IDE in which you program
e Stop your program at a particular point

(breakpoint)
e Inspect the contents of a variable (/nspect or

watch)

e Step through a program as it executes (step

into, step over, step oul). FRANKLIN ¢
P p oul) UNIVERSTTY [

www . franklin.edu

Debugging Tools

e Typical debugging session

e Set a breakpoint in your code just prior
to where you think a problem is
occurring (i.e. on the line just ahead of
the one in an exception’s stack trace).

e Run the program in debug mode, and
the program will stop just ahead of the

crash

FRANKLWUF1
UNIVERSITY [

www._franklin.edu

Debugging Tools

e Typical debugging session

A breakpoint

set at line 80. “§' |l console HIML (CsS | Script> | DOM et)
+ sorting.js e W g |
})
77| function merge{srrl, srr?) {
Ta wvar result = new Arreyiarrl_length + erri.length);
th 79 var i=0, =0, k=0;
e '.' &0 while (i < arrl.length && j < arri.length) { (=1
81 if farrlli] < sre2l[jl) {
82 result[k++] = arrlli+t]s
o R 53 } el {
un 8: - ::sult[k++] = garrZ[j++];
85 1
the| -~ el
crasn
FRANKLIN “H
UNIVERSITY [

www . franklin.edu

Debugging Tools

e Typical debugging session

e Examine the variables at that point to
determine what may have gone wrong.
Use the watch or inspect features.

e Step forward through the program to
examine how the state of objects
change as the program is executing
line-by-line.

FRANKLIN *’H
UNIVERSITY [

www._franklin.edu

= Debugging Tools
[] s s - e ————1
® TyPI([[waten [stack sreskooines
]'I Mew watch expression, ..
this Window sorting. htm!
o EXE scopeChain [Call { k=0, maore..}, Window zorting.htmil]
[+ arrl [2, 3, 4, 2more..]
det [+ arr2 [o, 1, 7, 2more..]
i a
Use | :
S€| 0
result [r , , 7 more...]
e Ste

The watch window displays @M IS executing
the names and values of
the local variables in the H

- FRANKLIN
function UNIVERSTTY [

www . franklin.edu

Debugging Tools

e Typical debugging session

e Step into — if on a line with a function
call, starts debugging that function,
otherwise just executes the next line

e Step over - if on a line with a
function call, calls the function (but
doesn’t debug it), otherwise just

executes the next line.

FRANKLWUF1
UNIVERSITY [

www._franklin.edu

Debugging Tools

e Typical debugging session

e Step out — runs the current function
to completion, resumes debugging at
the point at which the function was
called.

e Continue — runs to the next
breakpoint.

FRANKLWUF1
UNIVERSITY [

www . franklin.edu

Debugging Tools

e Typical debugging session
e Step out — rung St o V]t Stepout |

NGO\ / t:

#" %' || console HTML (SS | Script~ | DOM et \ V

all = | sorting.js -
75| 3

77 | function merge{srrl, srrz) {

T8 var result = new Arrayiarrl._lg — —
T3 var i=0, j=0, ¥k=0; H
$ =0 while (i < arrl.length && j {[Contlnue Step over
81 if (arrl[i] < =rr2[jl) {
a2 result[k++] = arrl[itt];
a3 } else {
84 result[k++] = arrZ[j++];
85 }
} [}
' FRANKLIN “H
UNIVERSTTY [

www._franklin.edu

Debugging Tools

e Firebug demonstration

o http://encytemedia.com/blog/articles/2006/05/12/a
n-in-depth-look-at-the-future-of-javascript-
debugging-with-firebug

e http://www.digitalmediaminute.com/screencast/fire

bug-js/

FRANKLIN fH
UNIVERSITY [

www . franklin.edu

Questions?

FRANKLIN *‘H
UNIVERSITY [

- Next Week

e Last class! ©
e Final exam! ®

FRANKLIN *‘H
UNIVERSITY [

www . franklin.edu

ITEC 136

Business Programming Concepts

Week 14, Part 06
Self Quiz

FRANKLIN UNIVERSITY

FOUNDED 1902

59

Self Quiz

e What is the difference between
validation and verification?

e Name the five different types of
testing in the SDLC.

e Compare and contrast black-box and
white-box testing.

FRANKLIN *ﬂ
UNIVERSITY [

www . franklin.edu

= Self Quiz

e What is the advantage of a unit
testing framework over some ad-hoc
approach?

e Write a function “isSorted” that
returns true if the array given as a
parameter is sorted, and false
otherwise.

FRANKLWUF1
UNIVERSITY [

www._franklin.edu

= Self Quiz

e Write a thorough set of test cases
for isSorted.

e Describe the process of debugging
using a debugger.

e Describe the process of debugging
using a logging facility.

FRANKLWUF1
UNIVERSITY [

www . franklin.edu

ITEC 136

Business Programming Concepts

Week 14, Part 07
Upcoming deadlines

FRANKLIN UNIVERSITY

FOUNDED 1902

63

Upcoming Deadlines

e Due April 13
e Homework 12 (optional)
elab 4
o Reflection paper
e Final exam

UNIVERSITY [

www . franklin.edu

FRANKLIN “H
d

