
1

WEBD 236 Lab 4
If you use an external source (i.e. a web-page, the required textbook, or an additional book) to help you

answer the questions, then be sure to cite that source. You should probably always be citing a source.

Problem
It’s time to expand the blog to add the capability of searching by tag and to add/delete comments. In

the process, you should also add validation for fields such as strong passwords and valid e-mail

addresses. You should add the following features

 Clickable tag names. Since tags are stored in a single field attached to the comment, you will

need to use a regular expression to break the string into an array of strings that are the tags.

You will then need to iterate through those strings, forming an anchor tag for each that points

to a new tag controller (i.e. tag/view/sometagname). Clicking on a tag name should show all

posts that contain that tag.

 Comments on posts. Comments will involve another table in the database containing the date

stamp of the comment, the user id of the commenter (only registered users can comment), the

post id to which the comment is attached, and the text of the comment itself. When viewing a

post, you should also see all the comments. Comments can’t be edited once posted, but they

can be deleted by the person who created the comment.

 Data validation using the Validator class. This is to ensure that all required fields have values,

and that structured fields (such as email addresses and passwords) conform to expected norms.

 Object-oriented models. All model classes should be objects. This is consistent with your

homework 8 assignment.

 You will now need to be much more careful when deleting records because you will need to

maintain referential integrity:

o When a user is deleted, all the posts of that user as well as all their comments should

also be deleted.

o When a post is deleted, all its associated comments should also be deleted.

The following screen shots should help you to understand more fully:

2

Notice above that each tag is now its own hyper-link. When the user clicks on the hyperlink, the

application finds all the posts with that tag, and displays them, as shown below:

3

When viewing a post, you can now see all the comments that are associated with the post as well as add

your own comment. There is no separate form for adding comments; it is embedded into the page that

views posts:

Notice in the above as well that Todd Whittaker is logged in, and Todd can delete his own comment, but

not the comment by Joel Anderson. But, if no user is logged in, then the comment form should not be

displayed (see below).

4

Finally, validation should be put in place that handles email addresses, required fields, and passwords.

The figure below shows a weak password and a bad email address.

5

Basic Requirements:
 Make all tags be links.

 Tag links should display a page with all posts containing that tag.

 Add a comments form to the view post screen.

 Only registered users can comment (don’t display this form if the user isn’t logged in).

 A user can delete his/her own comment, but nobody else’s.

 All fields should be validated using the Validator class (required, email, password, etc).

 Model classes should now be object-oriented.

 Maintain referential integrity (deleting posts deletes all comments for that post, deleting users

deletes all posts by that user and all comments by that user).

 All lab 3 requirements should still also be met.

Helpful Hints
 See the validation class posted on the supplemental web site.

 You should use SQLite (not MySQL) for this project.

 Make sure that your project works on any server on any directory. In other words, you should

never hard-code a URL with the name or IP address of your machine. We won’t be using your

machine when we test it. Also, you should not hard-code a directory name in your application.

It should run as http://localhost/blog/index or as http://localhost/myblog/index or any other

directory URL.

 Use the MVC framework developed in class. This will help, since the project is getting bigger.

Submission instructions
Create a ZIP file of your entire project contents as it is found under your C:\XAMPP\htdocs\blog3\

directory. This ZIP file should contain your database, your PHP scripts, style files, etc. Follow proper

coding conventions (indentation, commenting, etc.) that you would have learned in previous courses.

Submit the ZIP file to the dropbox for this assignment in the course.

http://localhost/blog/index
http://localhost/myblog/index

