NP-Completeness

Reference:
• CLRS Chapter 34
• Garey and Johnson 1979, “Computers and Intractibility” (or Online Annotated List of selected NP-complete Problems http://www.csc.liv.ac.uk/~ped/teachadmin/COMP202/annotated_np.html)

Objectives:
• To understand the theory of NP-Completeness
• To learn the technique of reduction in proving NP-Completeness
• To appreciate why NP-Completeness is an important consideration in Algorithm Design and Analysis
• A philosophical conjecture: Creation is much harder than Verification.

Introduction

• Some problems are intractable (hard) – as they grow large, we are unable to solve them in “reasonable” time

• What constitutes reasonable time? In this course, it means polynomial time
 – On an input of size \(n \), the worst-case running time is \(O(n^k) \) for some constant \(k \)
 – Polynomial time: \(O(n^2) \), \(O(n^3) \), \(O(1) \), \(O(n \log n) \), etc
 – Not in polynomial time: \(O(2^n) \), \(O(n^{\log n}) \), \(O(n!) \), \(O(nL) \), etc
Introduction

- We define \(P \) to be the class of problems solvable in polynomial time.
- Are all problems solvable in polynomial time?
 - No: Turing’s “Halting Problem” is not solvable by any computer, no matter how much time is given.
 - Such problems are clearly intractable, not in \(P \).
- \(NP\text{-Complete} \) problems are an interesting class of problems whose status is unknown.
 - No polynomial-time algorithm has been discovered for an \(NP\text{-Complete} \) problem.
 - No superpolynomial lower bound has been proved for any \(NP\text{-Complete} \) problem, either.

Introduction

- We call this the \(P = NP \) question.
 - The biggest open problem in CS.
- Difference between \(P \) and \(NP\text{-Complete} \) problems appear to be slight.
 - 2SAT vs 3SAT, 2-COLOR vs 3-COLOR, 2FS vs 3FS, Matching vs 3DMatching.
 - Euler tour vs Hamiltonian cycle.
 - Shortest vs Longest path problem.
Shortest Path vs Longest Path

- **Optimal Sub-structure**
 - Optimal sub-structure exists for the Shortest Path problem:
 - consider shortest path between A and D passing through B
 - Paths from A to B and B to D are both optimal. Why?
 - Optimal sub-structure does **not** exist for Longest Path problem:

![Graph showing Shortest Path vs Longest Path](image)

Decision vs Optimization Problems

- **Optimization** problems
 - Each feasible solution has an objective value
 - Goal: to find the feasible solution with the optimal (min/max) value
- **Decision** problems are “yes/no” problem
- **Example.** PATH vs Shortest Path
 - PATH: Given G, u, v and integer k, **is there** a path from u to v with distance at most k?
 - Shortest Path: Given G, u, v, find a path from u to v with **minimum** distance.
- Strictly speaking, NP-Completeness applies to **decision problems** and **not** directly to optimization problems
- Decisions problems are “easier” (“no harder”) than the corresponding optimization problems. **Why?**
Complexity Classes P and NP

- P is class of problems that can be solved in polynomial time
- NP (nondeterministic polynomial time) is the class of problems that can be solved in polynomial time by a nondeterministic computer
- For Algorithms people, NP refers to the class of problems that can be verified by a polynomial-time algorithm.

Verification

If you tell me that this graph is 3-colorable,

it is very difficult for me to check whether you are right.
Verification

But if you tell me that this graph is 3-colorable and give me a solution, it is very easy for me to verify whether you are right.

Hamiltonian Cycle

- A *hamiltonian cycle* of an undirected graph is a simple cycle that contains every vertex
- Hamiltonian-cycle problem (HAM): Given a graph G, does it have a hamiltonian cycle?
- Examples: CLRS Figure 34.2
- How might a *naïve algorithm* solves HAM?
Verification

- Your friend tells you that a given G is Hamiltonian and gives you a “proof” (the vertices along a Hamiltonian cycle)
- This proof is also called a certificate
- How to verify the “proof” in polynomial time?
- Verification algorithm A(instance x, certificate y):
 For any instance x,
 a. if x yields a “yes” answer, A(x,y) returns 1
 b. if x yields a “no” answer, then A(x,y) returns 0 for all y.
- A problem is in class NP iff there exists a polynomial-time verification algorithm.
P and NP

- Summary so far:
 - \(P \) = problems that can be solved in polynomial time
 - \(NP \) = problems which can be verified in polynomial time
 - Is \(P \) a subset of \(NP \)?
 - Unknown whether \(P = NP \) (most suspect not)

- HAM is in \(NP \):
 - Cannot solve in polynomial time
 - Can verify “solution” in polynomial time

Hard and Complete Problems

Want to identify the “hardest” problems in a class such as \(NP \).

If these problems have deterministic polynomial-time solutions then all problems in that class do.

Reduces the \(P = NP \) question to that of whether one of these “hard” problems is in \(P \).

Definitions: Let \(C \) be a complexity class.

- \(L \) is **hard for** \(C \) if every problem in \(C \) is polynomially transformable to \(L \).
- \(L \) is **complete for** \(C \) if it is (1) in \(C \) and (2) hard for \(C \).
NP-Complete Problems

• NP-Complete problems are the “hardest” problems in NP:
 – If any *one* NP-Complete problem can be solved in polynomial time…
 – …then *every* NP-Complete problem can be solved in polynomial time…
 – …and in fact *every* problem in NP can be solved in polynomial time (which would show P = NP)

Reduction

• The crux of NP-Completeness is *reducibility*
• Informally, a problem P can be reduced to another problem Q if :
 – *any* instance of P can be “easily modelled” as an instance of Q,
 – the solution to the latter provides a solution to the former and vice versa
• Intuitively: If P reduces to Q, P is “no harder to solve” than Q
Reduction

- Let L_1 and L_2 be 2 decision problems.

- L_1 is polynomial time reducible to L_2, written $L_1 \leq_p L_2$ when there is a function f that maps x, an instance of the problem L_1 into $f(x)$ in L_2 in polynomial time. f is called a reduction algorithm.

- If L_2 can be solved in polynomial time then L_1 can be solved in polynomial time

\[\begin{array}{c}
\text{Polynomial-time reduction alg. } f \\
\text{Polynomial-time alg. to solve } L_2 \\
\text{Polynomial-time algorithm to solve } L_1
\end{array} \]

\[\begin{array}{c}
\text{yes} \\
\text{yes} \\
\text{no} \\
\text{no}
\end{array} \]

Reduction

1. If $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$ then $L_1 \leq_p L_3$

2. $L_1 \leq_p L_2$ means that L_2 is harder (or equally hard) to solve.

3. Problems solvable in polynomial time are considered easy.

4. All problems in P are easy, so hard problems can only be found in NP or beyond NP.

5. Polynomial complexities are used frequently because they are closed under function composition, sum, difference and product.
Formal Definition of NP-Completeness

• A problem (language) \(L \) is NP-hard if \(L' \leq_p L \), for all \(L' \in \text{NP} \)
• \(L \) is NP-complete (NPC) if
 1. \(L \) is NP-hard
 2. \(L \in \text{NP} \)
• So NP complete problems are the hardest problems in \(\text{NP} \).
• If \(L' \leq_p L \) and \(L' \) is NP-Complete, \(L \) is also NP-Complete

P = NP?

Theorem 34.4 (CLRS)
1. If any NPC problem \(\in P \), then \(P=NP \)
2. If any NP problem is not in \(P \), then all NPC problems are not in \(P \).

Most people believe that \(P \neq NP \), i.e., \(P \subset \not\subset \text{NP} \)
Why Bother to Prove NP-Completeness?

• Though nobody has proven that $P \neq NP$, if you prove a problem NP-Complete, most people accept that it is probably intractable.
• Once proven that a problem is NP-Complete:
 – Stop thinking about developing a polynomial-time algorithm to solve the problem exactly.
 – Can instead work on approximation algorithms.
 – Or work on exact problems with clever branching or pruning techniques (e.g. branch and bound, A*).
• Solve HAM in $O(n^{100})$ time, you’ve proved that $P = NP$.
 – Turing Award (http://www.acm.org/awards/taward.html), Von Neumann Price (http://www.informs.org/Prizes/vonNeumannDetails.html) etc awaits you!

Proving NP-Completeness

To prove that P is NP-complete:

1. Prove that $P \in NP$;
2. Select a known NP-complete problem Q;
3. Reduce Q to P:
 a. Describe a reduction f that maps instances of Q to instances of P, s.t. “yes” for P = “yes” for Q (so if we had a poly-time solver for P, then we could use it to solve Q in polynomial time)
 a. Prove that the f runs in polynomial time.
Example: Traveling Salesman Problem TSP

Optimization problem: Given a weighted graph G, find a hamiltonian cycle with the minimum weight.

Decision problem
Given G and integer k, does G have a hamiltonian cycle with cost k?

To prove TSP is NP-Complete:
1. Prove that TSP \in NP
2. Pick HAM
3. Reduction HAM \leq_p TSP
 a. maps an instance of HAM to an instance of TSP s.t.
 "yes" for TSP = "yes" for HAM
 b. Can we do this mapping in polynomial time?
Family of NP-Complete Problems

- Given one NP-Complete problem, we can prove many interesting problems NP-Complete using reduction:
 - 3-coloring: can a given graph be colored with 3 colors such that no adjacent vertices are the same color?
 - Subset Sum: given a set of integers, does there exist a subset that adds up to some target T?
 - Vertex Cover
 - Clique
 - Set Cover
 - 0/1 Knapsack problem
 - Traveling salesman
 - Job scheduling, etc, etc

The SAT Problem

- One of the first problems to be proved NP-Complete is Satisfiability (SAT):

 Input: a Boolean expression on n variables
 Question: is there an assignment such that the expression is TRUE?

 Example: $((x_1 \rightarrow x_2) \lor \neg((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$

 • Cook’s Theorem: SAT is NP-Complete
 - Note: Argue from first principles, not reduction
 - Proof: Very difficult!
Conjunctive Normal Form

• Even if the form of the Boolean expression is simplified, the problem is still NP-Complete:
 – Literal: an occurrence of a Boolean or its negation
 – A Boolean formula is in conjunctive normal form, or CNF, if it is an AND of clauses, each of which is an OR of literals
 • Ex: \((x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5)\)
 – 3-CNF: each clause has exactly 3 distinct literals
 • Example: \((x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5 \lor x_3 \lor x_4)\)
 • Notice: TRUE iff at least one literal in each clause is true
 – 3SAT: Given a 3-CNF expression, is it satisfiable?

The 3SAT Problem

• Thm 34.10 (CLRS): 3SAT is NP-Complete
 – Proof: Too complicated!!
• The reason we care about 3SAT is that it is relatively easy to reduce to others
• Thus by proving 3SAT is NP-Complete we can prove many seemingly unrelated problems NP-Complete
Clique

- A clique of a graph G: a subset of vertices fully connected to each other, i.e., a complete subgraph of G.
- Clique: Given a graph G and integer k, is there a clique of size k?

Thm 34.11 (CLRS): Clique is NP-Complete

1. *Is Clique in NP?*
2. **Reduction 3SAT \leq^p Clique**
 - Transform a 3-CNF formula to a graph, for which a k-clique will exist (for some k) iff the 3-CNF formula is satisfiable.

3SAT \leq^p Clique

- The reduction:
 - Let $B = C_1 \land C_2 \land \ldots \land C_k$ be a 3-CNF formula with k clauses, each of which has 3 distinct literals.
 - For each clause put a triple of vertices in the graph, one for each literal.
 - Put an edge between two vertices if they are in different triples and their literals are consistent, meaning not each other’s negation.
Example
\[B = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor x_2 \lor x_3) \]

3SAT \leq_p Clique

2. given a k-clique, a satisfying assignment can be formed

B = 3-CNF expression

1. given a satisfying assignment, a k-clique can be formed
3SAT \leq_p \text{Clique}

Proof:
1. If B has a satisfying assignment, then each clause has at least one literal (vertex) that evaluates to 1.
 Picking one such “true” literal from each clause gives a set \(V' \) of \(k \) vertices. \(V' \) is a clique (Why?)
2. If \(G \) has a clique \(V' \) of size \(k \), it must contain one vertex in each triple (Why?)
 We can assign 1 to each literal corresponding with a vertex in \(V' \), without fear of contradiction.

Clique \leq_p \text{Vertex Cover}

- A vertex cover for a graph \(G \) is a subset of vertices incident to every edge in \(G \)
- Vertex Cover: Given graph \(G \) and integer \(k \), does \(G \) have a vertex cover of size \(k \)?

\[
\begin{align*}
\{1,4,5\} & \text{ is a VC} \\
\{2,3\} & \text{ is a min VC}
\end{align*}
\]

- Thm 34.12 (CLRS): Vertex Cover is NP-Complete
 1. Show Vertex Cover is in \(\text{NP} \)
 2. Reduction: Clique \leq_p \text{Vertex Cover}
 - The complement \(G_c \) of a graph \(G \) contains exactly those edges not in \(G \)
 - Can compute \(G_c \) in polynomial time
 - Prove \(G \) has a clique of size \(k \) iff \(G_c \) has a vertex cover of size \(|V| - k \)
Clique \leq_p Vertex Cover

- Claim: If G has a clique of size k, G_C has a vertex cover of size |V|-k.
 (Let V' be the k-clique. Then V-V' is a vertex cover in G_C)

- Proof:
 - Let (u,v) be any edge in G_C
 - Then u and v cannot both be in V' \((Why?)\)
 - Thus at least one of u or v is in V-V' \((Why?)\), so edge (u, v) is covered by V-V'
 - Since true for any edge in G_C, V-V' is a vertex cover for G_C

Clique \leq_p Vertex Cover

- Claim: If G_C has a vertex cover V' \subseteq V, with |V'| = |V|-k, then G has a clique of size k

- Proof:
 - For all u, v \in V,
 if (u,v) \in G_C then u \in V' or v \in V' or both \((Why?)\)
 - Contrapositive: if u \notin V' and v \notin V', then (u,v) \in G
 - In other words, all pairs of vertices in V-V' are connected by an edge in G, thus V-V' is a clique in G
 - Since |V|-|V'| = k, the size of the clique is k
Expanding the Catalogue

CIRCUIT SAT

SAT

3SAT

CLIQUE

HAM

VERTEX COVER

TSP

SET COVER

NP

General Comments

- Literally hundreds of problems have been shown to be NP-Complete
- Handbook: [Garey and Johnson 78]
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given
Coping with NP-Completeness

- Your boss asks you to implement an algorithm for a problem that you know is NP-complete. What do you do?

- Tell him that the whole world of computer scientists have not found an elegant algorithm
- Buy a faster machine, and learn to be much more patient!
- Try to find a polynomial time algorithm to solve it (and hence prove that P=NP)!
- Look for approximations, heuristics, etc
- Give up, and look for a new job!