
Currently this is simply a list, I hope to categorize and organize these in the near future.

 Read the compiler/interpreter messages carefully .. they will often give you some

idea about what is wrong., and where i.e., which line of source code might be

causing trouble.

 The compiler/interpreter may be off in its guess as to where the error occurred.

Generally, if it’s not the line it indicates, look at the statement above it. The real

error will never be below the line indicated.

 Always work from the top to bottom. Often (really quite frequently) fixing an

error above will eliminate a slew of errors below.

 Talk to someone (or yourself). By trying to explain the problem, frequently you

will discover it (because verbalizing it forces you to think about, and outline your

steps)

 Can you reliably reproduce the problem? If so cut the code down to the smallest

possible segment that shows the problem, doing this will often reveal the real

problem.

 Learn to read the programming documentation available to you, man pages, API

specs, etc. Get familiar with the index of your text book. Look for examples on-

line.

 BEFORE you can do any useful coding, you have to SOLVE the problem. Do you

have an algorithm (ie series of steps) that will accomplish your task? If so, write

them out in pseudo code.

 Learn to use a debugger. While print statements are a true-and-tried method, and

always will work in a pinch, time spent learning to use a debugger is time well

spent. If you have extra time, find out if there is a profiling tool available. It may

become helpful when you try to speed up your code. Careful not to obfuscate your

code in order to gain 0.00000001% speed up.

If you have some methods/strategies/tricks that work well for you, please let me know.

esmail@franklin.edu

mailto:esmail@cs.oberlin.edu

