
02-Mar-10

1

Today’s “Menu”
(week 6)

• Announcements

• Solutions to 3 practice functions

• Look over some sample code

• Introduction to Loops

• Questions?

02-Mar-10 COMP 480 - Winter 2010 1

Announcements

• Do not write nested functions

• Exam II will deal with loops … just FYI

• A program a day keeps the bugs away :-)

02-Mar-10 COMP 480 - Winter 2010 2

02-Mar-10

2

• Discuss sample solution

• Discuss sample code

02-Mar-10 COMP 480 - Winter 2010 3

How to improve

your code

• Readability counts – someone will read your code
(and comments)

• Group related code together, separate by blank
lines from others, expressions need blanks too.

• Separate methods from each other by @ 3 blank
lines

• Don’t “hack” .. “think/design” before you code.

• Don’t forget about testing – you know can do
something about problems (with if + error
messages)

02-Mar-10 COMP 480 - Fall 2009 4

02-Mar-10

3

Repeating Code

• Loops enable us to repeat code

• Powerful construct useful for

– Dealing with user IO (e.g., giving the user another

chance to enter data)

– processing large amounts of data (e.g., from a file)

– Repeating things in general if the algorithm calls

for it.

02-Mar-10 COMP 480 - Winter 2010 5

2 Types of Loops

• While-loop

– Used when we “don’t know ahead of time how

often to repeat” action. Examples?

• For-loop

– Used when we “know how many times to repeat

something”. Examples?

• Both loops are really equivalent

02-Mar-10 COMP 480 - Winter 2010 6

02-Mar-10

4

While Loop

while <Boolean exp true>:

statement(s)

• Will “enter” the loop if the expr is True, else
“skip” around it.

• Will stay inside the “body” of the loop until
expr is False.

• Danger of ∞ loop! Or “off-by-one” error.

02-Mar-10 COMP 480 - Winter 2010 7

Examples (1)

print ‘hello’

count = 0

while count < 5:

print "this is line %d" % count

print ‘the end.’

Output: ??

02-Mar-10 COMP 480 - Winter 2010 8

02-Mar-10

5

Examples (2)

print ‘hello’

count = 0

while count < 5:

print "this is line %d" % count

count = count + 1 # count += 1

print ‘the end.’

Output: ??

02-Mar-10 COMP 480 - Winter 2010 9

Examples (3)

print ‘hello’

count = 5

while count < 5:

print "this is line %d" % count

print ‘the end.’

Output: ??

02-Mar-10 COMP 480 - Winter 2010 10

02-Mar-10

6

02-Mar-10 COMP 480 - Winter 2010 11

DAYS_IN_YEAR = 365

print 'Program will compute approximately how old you are in days'

print '(without considering partial or leap years)\n‘

stop = False

while (not stop):

name = raw_input('What is your name? ')

age = input('How old are you (in years)? ') # What problems with this

code?

days_lived = age * DAYS_IN_YEAR

print ('Dear %s, you are approximately %d days old.' %

(capitalize(name), days_lived))

answer = raw_input('\nEnter "x" to stop: ')

if answer == 'x':

stop = True

print '\nEnding program\n'

raw_input('<enter> to exit')

Problems

1. Case-sensitive! “X” won’t quit the program,

only “x” will – poor interface design.

2. It is still possible to enter negative years!

Poor (unacceptable) functionality.

3. We need to be concerned about both user

interface and proper functionality. One

without the other is no good.

02-Mar-10 COMP 480 - Winter 2010 12

02-Mar-10

7

Fix Problems

1. Case-sensitive! “X” won’t quit the program

2. It is still possible to enter negative years!

FIXES!

1. String function to change input to lower case

2. Use ‘If-statement’ to check.

02-Mar-10 COMP 480 - Winter 2010 13

02-Mar-10 COMP 480 - Winter 2010 14

while (not stop):

name = raw_input('What is your name? ')

age = input('How old are you (in years)? ')

if age >= 1:

days_lived = age * DAYS_IN_YEAR

print ('Dear %s, you are approximately %d days old.' %

(capitalize(name), days_lived))

else:

print ('\nYou entered "%d" for age.' % age) # note blank line

print ('Please enter a value >= 1') # specific/helpful error msg

answer = raw_input('\nEnter "x" to stop: ')

if answer.lower() == 'x': # note use of string functions

stop = True

print '\nEnding program\n'

02-Mar-10

8

Basic For-Loop

• Use a for-loop to repeat statements a specific

number of times.
for n in [0, 1, 2, 3, 4]: # this is a list

print n # will print 0 to 4

• Same as
for n in range(5): # generates a list

print n # will print 0 to 4, not(e) “5”

• Can change start/end/increment values

02-Mar-10 COMP 480 - Winter 2010 15

range + lists (1)

• Built-in function range() creates lists

• Lists are fundamental Python data types – extremely
useful!

Examples: range([start],end-1,[step])

>>> range(4)

[0, 1, 2, 3]

>>> range(10, 15)

[10, 11, 12, 13, 14]

>>> range(10, 20, 2)

[10, 12, 14, 16, 18]

>>> range(10, 5)

[] # note – an empty list

02-Mar-10 COMP 480 - Winter 2010 16

02-Mar-10

9

range+lists(2)

>>> myList = range(1, 31)

>>> print myList

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]

for i in myList:

print i, i*i

range(-10, 0, 1) = ?

range(10, 29, 3) = ?

range(5) == range(0, 4, 1) ??

02-Mar-10 COMP 480 - Winter 2010 17

While + For

• Count from 1 to 10 with both loops:

i = ?? # should not use range() with while!

while i < ??:

print i

for i in range(??):

print i

02-Mar-10 COMP 480 - Winter 2010 18

02-Mar-10

10

Let’s write a program: BMI

02-Mar-10 COMP 480 - Winter 2010 19

Summary/Recap

• Questions?

02-Mar-10 COMP 480 - Winter 2010 20

