
COMP 480 – PROBLEM SOLVING WITH COMPUTING FALL 2009

PIXEL/IMAGE CHEAT SHEET

Important information on how to access pixels correctly in our “2D” pixel array with

column and row specifications.

The reference for the Image module of the PIL can be found at:

http://www.pythonware.com/library/pil/handbook/image.htm

Note that API says the following for im.size:

size

im.size => (width, height)

Image size, in pixels. The size is given as a 2-tuple (width, height).

So im.size[0] => columns and im.size[1] => rows
1
. It also states:

The access object behaves like a 2-dimensional array, so you can do:

pix = im.load()
print pix[x, y]
pix[x, y] = value

This means that the first value is the column and the second the row.

Our „co-ordinate‟ system, where position 0, 0 (column, row) is in the top left corner.

We have 11 (!) columns and 8 (!) rows. The red pixel is at position (0, 3). The blue

pixel at (6, 1), the yellow one at (5, 5) and the bottom, right purple pixel is at

position (columns-1, rows-1) – note that this notation is preferable to (10, 7)

since it will work for any size image. (Careful, it‟s easy to be „off-by-one‟)

 0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

1
 This was indicated correctly on the slides used for the F2F class, but then mistakenly changed for the WW

section, please make note of this. Updated, correct slides will be uploaded.

http://www.pythonware.com/library/pil/handbook/image.htm

Summary from slides:

• Pixel – picture element

• Pixel contains 8-bit RGB values

• 8 bits => 2**8 = 256 patterns, range 0 – 255

• 255 – max color value, 0 – zero color value …

• RGB tuples (rvalue, gvalue, bvalue)

(255, 0, 0) - red (0, 0, 127) - ?

(0, 0, 0) - ? (0, 255, 255) - ?

(255, 255, 255) - ? (127, 127, 127) - ?

Finally, note that if you have manipulated an image for a while, you may have to re-load

it in order to start out with a „clean‟ copy.

Basic Code Segment

import Image

im = Image.open(‘pic.jpg’)

print(‘image size: %d cols x %d rows’ % (im.size[0], im.size[1]))
print ‘mode: %s format: %s’ %(im.mode, im.format)
im.show()

pix_ar = im.load() # load image into 2D array
red_pixel = 255, 0, 0 # a red RGB pixel
cols = im.size[0]
rows = im.size[1]

