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Abstract

Peer-to-peer overlay networks present new opportunities and challenges for achieving enhanced network functionality at the
application level. In this paper we study the impact of point-to-point network latency on flooding broadcast operations in peer-to-
peer overlay networks. We show that two standard protocol mechanisms, used to control the amount of network resources used
during flooding, can in combination, significantly reduce the reach of broadcast messages. We prove that these standard mechanisms,
known as “time-to-live bounds” and “unique message identification”, can result in broadcast operations that only reach a vanishing
fraction of the nodes. In addition, we provide empirical evidence that the trend suggested by our formal results are found in data
obtained from the Gnutella network and through network simulations.
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1. Introduction

Internet application-level overlay networks present opportunities and challenges for achieving enhanced network
functionality. In this paper we consider the problem of analyzing broadcast operations over unstructured peer-to-peer
(P2P) overlay networks. In recent years a number of popular P2P applications (e.g., Gnutella, Kazaa, Bittorrent) have
been built in an unstructured way in which connectivity is achieved principally through random connections. One
fundamental operation required of many unstructured networks is to enable simple broadcast operations in which each
peer can communicate messages that can reach large numbers of other peer nodes. The popular Gnutella network
[13,12] uses message flooding as the principal search mechanism in an effort to maximize the coverage or reachability
of search query messages. A body of recent research work suggests that hybrid approaches which combine flooding
with some hierarchical structure and random walks may be optimal for the design of large-scale P2P search applications
[9,10,3,4].

Nearly all dynamic networks must at some level implement flooding operations, since there is generally no other way
to discover network linkages and update topology state information. To control the impact of flooding messages across
the network, standard mechanisms are generally used to locally terminate the flood. Examples of such mechanisms
include age fields, hop bounds, sequence numbers, and periodic updates. The reader is referred to the text [1] for
classical results concerning tradeoffs and theoretical issues regarding these mechanisms. In more recent work flooding
control mechanisms have been studied in the context of mobile ad hoc networks [15,8].
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In this paper we focus on the effects of point-to-point Internet-network latencies on flooding broadcast operations.
Such latencies can be highly variable and play a significant role in the performance of both structured and unstructured
P2P networks. Latencies can be caused by the configuration and congestion of the underlying network transport layer
(e.g., the Internet TCP/IP) or by the fact that peers are generally not bound to quality of service guarantees. We
show that the flooding control mechanisms of time-to-live (TTL hop bounds) and unique message identification (UID
sequence numbers) can, in combination, produce effects that significantly reduce the reach of broadcast messages. We
prove that there exists an infinite class of networks for which broadcast messages reach only a vanishing fraction of
the nodes of the network. In addition, in this paper we present efficient, exact and heuristic, algorithms that can be
used (offline) to maximize the reach of message broadcasts. Finally, we provide empirical evidence that suggests that
the trend indicated by our formal results are found in data obtained from the Gnutella network and through network
simulations.

1.1. Control of broadcast flooding

We focus our attention on two specific governing mechanisms which control a flooding operation. These mechanisms
work by executing a conditional test to determine whether or not a node should continue the flood locally. A node that
continues the flood will forward the message to each of its neighbors, except the one from which the message was
received.

TTL-Mechanism: The ‘Time-to-Live’ mechanism prevents messages from traveling farther than a specified number
of hops, defined by an initial TTL value. TTL bounds are implemented by including in each message header a TTL
value field. When a node receives a message it first checks to see if its TTL value is greater than zero. If it is greater
than zero, the node continues the flood with a decremented TTL. Otherwise the message is dropped.

UID-Mechanism: The ‘Unique Message Identification’ mechanism prevents messages from being repeatedly trans-
mitted from any node. This mechanism is implemented by including in each message header a UID (a unique ID label,
or unique sequence number). When a node receives a message it checks to see if it has previously seen that message.
If it has, the message is dropped and not forwarded. Otherwise, the node stores the new UID in a local table, and then
continues the flood.

For the remainder of the paper we will consider broadcasts implemented as flooding operations working in a network
environment of heterogeneous latencies, and operating under the constraints of the combination of the TTL- and
UID-Mechanisms. When these pair of mechanisms are implemented together we show that they can impact network
reachability via a phenomenon we call short-circuiting.

1.2. The short-circuiting phenomenon

This phenomenon characterizes a situation where a substantial number of nodes that are within the TTL bound of
the broadcast source fail to receive the message due to the impact network latencies. We define latency of a network
link as the time it takes a (unit size) message to traverse this link in the network. We interpret the latency of a message
path as the sum of the latencies on the links involved in that path.

Consider a message broadcast from a source node v0, and consider a path P (i.e., a sequence of adjacent nodes)
joining nodes v0 and vp, P = 〈v0, v1, . . . , vp〉. It is possible that there may be no throughput of the broadcast messages
from v0 to vp along P, even if the hop-length p of the path P is less than or equal to the initial TTL value t. This can result
from heterogeneous latencies in the network, as the following scenario shows. Suppose there exists a message path Q
of length q, where t �q > p, from v0 to some intermediate node u = vi of P, having a strictly smaller latency. Then
a broadcast message originating from v0, and following path P will be killed (by UID-Mechanism) when it reaches u,
since it is the duplicate of the earlier arriving message originating from v0, but following path Q. Notice that there may
also be no throughput along path R consisting of the path Q together with the subpath of P from u to vp. This effect
results from the fact that R may have a hop-length strictly greater than t, and hence, by TTL-Mechanism there is no
throughput of the broadcast message originating at v0 along path R. And, indeed, there may be no throughput of the
broadcast message along any path from v0 to vp.

The effects of short-circuiting are determined by the cardinality of the set of nodes that are reached by a particular
message broadcast. We refer to this reached set of nodes as the message horizon of the broadcast. We measure the
impact of short-circuiting by considering bounds on the short-circuit broadcast ratio which is defined as the cardinality
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of the broadcast message horizon divided by the cardinality of the set of nodes within the TTL-bound number of hops
from the broadcast source—this is simply the number of nodes that would receive the broadcast message had the
UID-mechanism not been used. To simplify the discussion we consider only connected, undirected, latency-weighted
networks G = (V , E, �); here we use � to denote the latency function on the edge set E. For esthetic reasons, we are
often interested in considering broadcast operations in which the TTL-bound is sufficient to reach the entire network.
In other words, we want to consider networks in which the diameter (that is, the length of the longest minimum path
length between node pairs) is no larger than the TTL bound used. In such a case, the bounds on the message horizon
sizes directly yield bounds on the short-circuit broadcast ratio.

It is straightforward to verify that in any weighted, connected network any broadcast with a TTL-value of t will reach
at least t nodes, even when both the TTL- and UID-Mechanisms are used. Somewhat surprisingly, this reachable set size
is a tight bound, within a constant factor, due to the extreme effects of short-circuiting. That is, there are networks in
which each and every broadcast with TTL-value of t will reach only O(t) nodes. In terms of the short-circuit-broadcast
ratio, we show that there are networks in which broadcasts reach only a vanishingly small fraction of nodes. We note
that in our proofs we construct an infinite class of small-diameter, highly clustered, “small-world” networks which
have these extreme short-circuiting effects (see [7,14,2] for recent work on small-world networks). We summarize our
results in the following theorem which is proved in Section 2.

Theorem 1. Given integer parameters t, n such that 1� t �n, there exists an n-node network G = (V , E, �) with
logarithmic diameter (�(log n)), such that any broadcast from any source node with an initial TTL value of t will
only reach O(t) nodes of G. Furthermore, there exists an infinite class of n-node networks for which the short-circuit
broadcast ratio is �(log n/n).

In Section 3 we consider generalizations of the broadcasting problem, including versions in which multiple broad-
casting sources are selected with a goal of maximizing the reach of broadcast messages. We also study generalizations
in which the diameter or radius of the network is a parameter. We provide general, and nearly tight upper and lower
bounds which account for these multiple parameters.

In Section 4 we consider algorithms that can be applied to maximize the message horizon by selecting one or more
broadcast source node. We present an efficient algorithm which will precisely compute the message horizon set for any
broadcast message. Furthermore, we present a heuristic algorithm that can efficiently find a set of k broadcast source
nodes which will maximize the message horizon to within a constant factor of optimal.

Our theoretical results suggest substantial negative impact in network environments that rely on both the TTL- and
UID-Mechanisms to govern flooding. We therefore consider empirical evidence to test the expected significance of
our results in real applications. In Section 5 we report a series of experimental results on instances of broadcasting in
a variety of network settings. We provide measurements obtained through experimental studies with both simulated
networks and the Gnutella P2P file sharing application. Our empirical results, reported in Section 5, provide supporting
data that shows that the trends suggested by the theoretical results are likely present in the real world.

1.3. Formalizing the model

Given a latency-weighted network G = (V , E, �), the flooding operation we study is defined by the following
protocol regimen. Messages in the network we will denote msg(uid, t, h), with unique message identifier uid , initial
TTL-value t, and current hop-value h. Messages have payloads that are left unspecified for simplicity. The hop-value
h records the number of hops from the message’s source node. The values of uid and t remain constant over the life
of a message broadcast operation. The hop-value h is increased with each hop, and is compared with t at each node
to test if the TTL limit has been reached. We will denote a message (ready for broadcast) originating at node v0, with
initial TTL-value t, by msg(uidv0 , t, 1). The broadcast regimen operates as follows, and defines the valid message
paths associated with the transmission of the broadcast message.
(1) Source v0 sends msg(uidv0 , t, 1) to all the neighbors of v0, injecting the message on all links connected to v0 at

the same time.
(2) Nodes process messages on first-come-first-served basis as follows: when a node v receives message msg(uidv0 , t,

h) it checks whether uidv0 has been seen previously. If it has, then the message is dropped with no further processing.
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Fig. 1. The n-node network constructed in the proof of Proposition 1. A message broadcast from v0 with a TTL-bound of t will never reach the cloud
of n − t − 1 nodes, due to the large latency on edge (v0, vt ). However, a broadcast from v0 with a TTL-bound of t − 1 will reach all n nodes in the
network.

(3) If not, then v records uidv0 in its local table, and checks whether or not t = h. If t > h, then v replicates the
payload and forwards the message msg(uidv0 , t, h + 1) (with incremented hop count) to all its neighbors (except
the node from which it received the message). If t = h then the message is dropped and not forwarded.

For a given latency-weighting � of the network, we use H�(v0, t) to denote the message horizon (or simply, t-horizon)
of a message originating from v0 with a TTL-bound of t. In other words, H�(v0, t) denotes the set of all nodes v which
receive a message msg(uidv0 , t, ∗) originating from v0, where ∗ is any value.

2. The extremal effects of short-circuiting

Before we prove the main result on short-circuiting we prove a simpler result that shows, for a given source node,
that increasing the TTL-bound can have significant negative impact on the size of the message horizon.

Proposition 2. For all integers t, n, such that 2 < t < n, there exists n-node network G = (V , E, �), and a source
vertex v0 ∈ V , with the property that any broadcast from v0 with an initial TTL value of t will reach only t nodes of G;
However, any broadcast from v0 with an initial TTL value of t − 1 will reach all n nodes of G.

Proof. We construct G as follows. First, start with a (t + 1)-node cycle 〈v0, v1, . . . , vt , v0〉. Now add n − t − 1 new
nodes U, such that each new node is joined by a single edge to vt . Assign a high latency to the edge (v0, vt ), so that it
dominates the latency of the t-path 〈v0, v1, · · · , vt 〉, see Fig. 1. A message broadcast from v0 with a TTL-bound of t will
propagate through this t-node path 〈v0, v1, · · · , vt 〉, however, the message will be killed at vt by the TTL-mechanism.
Hence no node in the set U will ever receive a copy of the broadcast message.

Finally, note that a message broadcast from v0 with a TTL-bound of t ′, with 2� t ′ < t , will reach all the n− t nodes
of U, in addition to at least t ′ nodes of the t-path. �

Our main theorem (Theorem 1) generalizes the proposition above by showing that the essence of the result is not
dependent on the location of the source—that is, there are networks in which every node will experience extreme
short-circuiting effects. Furthermore, the proof shows that an infinite class of highly-clustered, logarithmic diameter
networks has this property. We now proceed with the proof of Theorem 1.

Proof of Theorem 1. To prove the upper bound on the message horizon we first construct a small network (cluster)
that has the property that messages that enter the cluster always fail to propagate out of the cluster. We will use this
cluster to build an n-node network promised in the statement of the theorem. For a given TTL-bound of t, we construct
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Fig. 2. The black-hole network cluster BHt defined in the construction of Theorem 1. Any message broadcast in BHt from end node v0 with an
initial hop count of h < t will reach other end node vt with a hop count of precisely t, and thus cannot propagate out of the cluster.

a cluster called a t-black-hole graph BHt . We use this name since, as we show, messages that enter the cluster never
escape. To construct BHt we begin with a path P = 〈v0, v1, . . . , vt 〉 of length t + 1 joining two end nodes v0 and
vt . Assign a latency of weight zero to each edge (vi, vi+1) on this path. Now join each node vi (for 1� i� t − 1)
to both end nodes v0 and vt ; and assign latency weights for these edges equal to the distance between each pair
in the original path, i.e., the edge (vi, v0) is assigned weight i and the edge (vi, vt ) is assigned weight t − i (see
Fig. 2).

The following claim states that messages that are broadcast from one end of a t-black-hole graph BHt , can reach the
other end only by using up all the TTL value in the message. This claim can be easily verified by the reader.

Claim 3. For any integer h, such that 0�h < t , a message broadcast in BHt from end node v0 with an initial hop
count of h will reach other end node vt with a hop count of precisely t. The same result holds if we reverse roles of v0
and vt .

It follows that by linking together black-hole graphs end-to-end, we can produce large graphs with large short-
circuiting effects, independent of the broadcast source location. For example, consider constructing an n-node graph
by linking together in a circle n/t copies of the BHt graph. For purposes of exposition we will assume that t divides n.
This graph has the property that from any node location a message horizon has size at most 3t + 1 = O(t). To prove
the upper bound for graphs of logarithmic diameter, consider the following construction.

Consider a complete binary tree T = (VT , ET ) having |VT | = n/t vertices. We define the BH-extension of T,
denoted by T [BHt ] to be the n + 1 node graph obtained from T by replacing each edge of T with a black-hole graph
BHt , such that the end nodes of each black-hole are placed at the parent and child nodes of each tree edge. It is clear
that the diameter of this graph is diam(T [BHt ]) < 2 log n, for any t �n.

We now analyze the size of the maximum t-horizon set in the graph T [BHt ]. Suppose node v is an end node of a
some component black-hole in T [BHt ]. Then, since the t-horizon H(v, t) of v is simply the union of the nodes in all
the t black-holes for which v is an end node, we have that |H(v, t)|�3t + 1. On the other hand, assume that v is not
an end node of a black-hole. We can assume that v lies in the interior of some component black-hole having end nodes
v0 and vt . In this case the t-horizon of v is the union of the nodes in all the component black-holes for which either v0
or vt is an end node. Hence, in this case, and in the general case, we have that H(v, t) is of size at most 5t + 1 = O(t).
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We note that essentially the same argument can be used for any network that is a BH-extention of a bounded degree,
logarithmic diameter network. �

3. Generalized broadcasting models

In this section we consider several generalizations of Theorem 1. We consider generalizations where the radius of
the network is a parameter of the problem, and generalizations in which multiple message source nodes are optimally
selected to increase the message horizon.

The radius of a network is the smallest radius for any node in the network, where the radius of a node is the least
integer that upper bounds any shortest path distance from that node. It is possible to generalize Theorem 1 for graphs
of arbitrary radius, as the following corollary states.

Corollary 4. For all integers r, t, n�1, there exists n-node network G = (V , E, �) with radius r such that any
broadcast with an initial TTL value of t will reach only O(n1/r t) nodes of G.

Proof. We modify the construction from the proof of Theorem 1 by considering a n/t node rooted tree T of depth r,
whose interior nodes have n1/r children. Now consider the network G = T [BHt ] which is the BHt -extension of the
tree T. Since the degree of each node of the original tree is bounded above by n1/r + 1, we have that any broadcast
with an initial TTL value of t in the network G will reach only at most 2n1/r + 1 of the BHt components, and thus the
message horizon reaches at most O(n1/r t) nodes of the network G. �

Now consider the impact of selecting k�1 locations for broadcasting sources with the goal of increasing the message
horizon. Such a generalization is natural in P2P networks, such as Gnutella, since peers often freely select neighbors
to improve network connections. We consider the problem of determining bounds on the size of the message horizon
for an optimal selection of k�1 locations. We consider the case where the same message (or more precisely, the
same message body) is broadcast from different locations, and each broadcast is per-source independent. That is, each
broadcast source uses a unique uids (for each s in the set) so that messages from different sources will not interfere
with each other. Hence, a node may receive the same message from different sources, however, the UID-mechanism
will still insure that message originating from a single source will never circulate in loops. We define the t-horizon
H�(S, t) for a set of source nodes S, as the union of the nodes sets H�(s, t) over each s ∈ S.

Proposition 5. Given integers k, t, n, such that kt �n, there exist n-node networks such that for any set S of k broadcast
sources, the size of the t-horizon H�(S, t) is O(kt); furthermore, for any connected n-node network there is a set S of k
broadcast sources for which the t-horizon H�(S, t) is �(kt).

Proof. The upper bound follows easily from the proof of Theorem 1. Since, from the construction given in that proof,
each one of any k broadcasting sources will reach only O(t) nodes.

We argue the lower bound as follows. For any connected network, we can determine a set of nodesS = {v0, v1, . . . , vk}
that can reach at least kt/2 nodes. Choose v0 arbitrarily, and let H(v0, t) be the t-horizon of v0; and, let H0 ⊂ H(v0, t)

be the set of nodes reachable by shortest-latency paths from v0 within t/2 hops. Now let v1 be any node that lies outside
of H(v0, t). Let H(v1, t) be the t-horizon of v1 and let H1 ⊂ H(v1, t) be the set of nodes reachable by shortest-latency
paths from v1 within t/2 hops. It follows that H0 ∩ H1 = ∅ since otherwise there would exist a shortest-latency path
of t hops from v0 to v1, which would imply that v1 ∈ H(v0, t), a contradiction. Continuing, iteratively choose vi for
each i = 2, 3, . . . , k − 1 so that each vi is not a node in any previously generated message horizon set. It follows from
the selection that each set Hi is pairwise disjoint from all Hj for all i 	= j . Since each set Hi has cardinality at least
t/2 the result follows. �

We now consider a generalization in which all the parameters we have considered are taken together. Given integers
n, r, k, t �1, let H(n, r, k, t) denote the minimum size message horizon, for an optimal placement of k sources broad-
casting a message in an n-node network of radius-r with initial TTL value of t. We prove the following theorem that
gives nearly tight upper and lower bounds on the cardinality of this set.
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Theorem 6.

c1n
1
r k1− 1

r � |H(n, r, k, t)|�c2n
1
r (tk)1− 1

r ,

where c1, c2 are constants independent of n, r, k, t .

We prove the theorem with two lemmas giving the upper and lower bounds.

Lemma 7. Given integers n, r, k, t �1,

|H(n, r, k, t)|�cn
1
r (tk)1− 1

r ,

for a constant c�8.

Proof. Consider a tree T of depth r, whose root node has y children and whose vertices at level i all have x children,
i = 1, . . . , t − 1. Then, the number nT of nodes of T satisfies:

nT = 1 + y + yx + · · · + yxr−1 > yxr−1 + 1. (1)

Consider the n-node network G = T [BHt ], that is, the BH-extension of T. We have that n = t (nT − 1) + 1 > tyxr−1.
Therefore,

1�y < nt−1x1−r . (2)

Now consider locating k sources at a subset S of vertices in G. It follows that the size of the t-horizon H(S, t) of S is
bounded by the following.

|H(S, t)| < ty + (2tx + t + 1)k� ty + 4tkx. (3)

Applying inequality (2) we obtain

|H(S, t)| < ty + 4tkx�nx1−r + 4tkx. (4)

We now choose a value of x to minimize the size of H(S, t), e.g., let x = (n/4tk)
1
r . Substituting this choice in (4) we

obtain

|H(S, t)| < 2(n
1
r (4tk)1− 1

r ). (5)

Note that so long as n > 4kt , then x�1 and y�1. However, for n�4kt then the upper bound follows trivially since
the right side is at least n. So Lemma 7 follows. �

We now prove the lower bound of Theorem 6 through the following lemma.

Lemma 8. Given integers n, r, k, t �1, such that k�n,

|H(n, r, k, t)|�cn
1
r k1− 1

r ,

for a constant c�1/4.

Proof. We prove this result by showing that in any weighted n-node network G of radius r, there exists a set S ⊂ V (G)

of k sources that have t-horizon that matches the bound. To show this we need only to apply the fact that each
source can reach all the nodes that are adjacent, i.e., in its immediate neighborhood, which of course, is independent
of t. All nodes in the immediate neighborhood of a source must be reachable in a broadcast, since they cannot be
short-circuited.
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Now assume that G is an n-node graph of radius r, and let TG be any radius-r spanning tree of G. We choose a set
of k sources v0, v1, . . . , vk−1 as follows. First select one node v0 of minimum radius in TG. Now greedily select the
remaining k − 1 sources by choosing the nodes of highest degree in TG. Let S0 denote this set of k nodes. For each
1� i� t , let Si denote those nodes of TG at hop distance exactly i from S0, where the hop distance to a set is defined
as the smallest possible distance to any node in the set.

Note that the sum of degrees of nodes in S0 in TG can be bounded as follows:
∑

v∈S0

degTG
(v)�2(|S1| + |S0| − 1).

This follows since the sum of degrees is at most twice the number of edges in the induced subgraph on S0 ∪ S1, which
follows from Euler’s formula. Since the induced graph is a forest, we have that the number of edges in the induced
subgraph is at most |S0| + |S1| − 1. Hence, the average degree in TG of nodes in S0 is at most 2(|S1|/|S0| + 1)/|S0|.
Let m be the lower integer of this average value.

Now by the greedy selection of S0, we have that each v ∈ V − S0 has degree deg(v)�m. By this degree bound, we
have that for each i�1,

|Si |�m|Si−1|�m2|Si−2|� · · · �mi−1|S1|.
Since the radius of S0 in T is r, we have that

n� |S0| + |S1| + |S1|m + |S1|m2 + · · · + |S1|mr−1.

So,

n� |S0| + |S1|(rmr−1)�(|S0| + |S1|)(r2r−1(|S0| + |S1|/|S0|)r−1)

and so

n�2r−1(r + 1)(|S0| + |S1|)r/|S0|r−1

and hence,

|H(n, r, k, t)|� |S0| + |S1|�(n
1
r |S0|1− 1

r )/(21− 1
r (r + 1)

1
r )� 1

4
n

1
r k1− 1

r .

The proof of the lower bound follows. �

4. Algorithms for maximizing the message horizon

In the previous section we considered extremal results which provided upper and lower bounds on the size of minimum
message horizon given an optimal selection of message broadcast sources. In this section we provide algorithms that
can be used to maximize the message horizon for given network instances.

4.1. An algorithm to compute the message horizon

We now show that there is an efficient algorithm which will precisely compute the message horizon set H�(v0, t), for a
given source node v0. We show more generally that we can compute the short-circuit distance (or simply, SC-distance),
denoted by dt (v0, v). This distance is defined as the number of hops used by a broadcast message to reach a destination
node v from the broadcast source node v0.

The following is an adaptation of a standard shortest-path algorithm that can be used to efficiently compute these
short-circuit distances. This is done by maintaining a priority queue of latency values L(v), representing an upper bound
on the elapsed time from the beginning of the broadcast to the time the message first reaches node v. The algorithm
proceeds similar to a discrete-event simulation where the minimum L-value is used to determine the next event, and thus
we determine the delivery order of messages. By an inductive agreement, the following procedure correctly computes
the delivery order and the short-circuit distance for each node.
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Procedure SC-distance (G, v0, t)

Input: An weighted graph G = (V , E, �), source node v0 ∈ V , and TTL-bound t

Output: The short-circuit distances dt (v0, v) from v0 to each node v.

Step 1. Initialize L(v0) = dt (v0) = 0, Mark v0.
For all v 	= v0,

if (v0, v) is an edge, set L(v) = �(v0, v) and dt (v) = 1
otherwise set L(v) = dt (v) = ∞.

Step 2. Greedily choose an unmarked node v,
so that L(v) is minimized; mark v

Step 3. If dt (v) < t then update estimated latencies and SC-distances as follows:
for all unmarked u adjacent to v, if L(u) > L(v) + �(v, u), then
set L(u) = L(v) + �(u, v) and dt (u) = dt (v) + 1

Step 4. If any unmarked nodes remain, go to Step 2.

The algorithm above can clearly be used to find the message horizon of a single node, simply by returning the set of
all vertices with finite SC-distance. Obviously, the node with the largest message horizon can be found by determining
the cardinality of the message horizon for each node.

4.2. Heuristic algorithm to maximize the message horizon

To increase the reach of messages we consider the case of using multiple, independent broadcast sources. In Section
3 we presented upper and lower bounds on the message horizon when using k sources for a message broadcast. We
consider now a greedy method as a heuristic for selecting k sources to maximize the message horizon.

Procedure Greedy k-Maximum t-Horizon (G, t, k)

Input: An weighted graph G = (V , E, �), a TTL-bound t, and an integer k.

Output: A k-subset of nodes S ⊂ V (G)

Objective: Maximize the size of the message horizon H(S, t)

Initialize S to empty set
For i = 1 to k do

Find si so that H(S ∪ si, t) is maximized
Set S = S ∪ si

As in Section 3 we assumed an independence property among message broadcasts using multiple sources. That is, by
giving unique (uids) tags for each message source, messages originating from different source nodes cannot interfere
with each other. This assumption is sufficient to show that the above greedy approach will give good constant-factor
approximation for maximizing the message horizon, since we can reduce the problem to the classical maximum
coverage problem. The greedy algorithm for this problem is well known to yield a constant-factor approximation (see,
for example, [5,11]). Thus, we have the following theorem.

Theorem 9. The algorithm Greedy k-Maximum t-Horizon yields a polytime constant ratio 1 − 1/e-approximation
algorithm.

5. Empirical studies

Our original interest in the effects of short-circuiting arose out of experimental evidence associated with the per-
formance of a large-scale P2P file sharing application called Gnutella. Gnutella applies flooding in its search strategy,
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Fig. 3. The results of level-1 short-circuiting effects on the broadcast horizon on the Gnutella network. The y-axis represents the broadcast horizon
size, and the x-axis labels each of 70 broadcast trials. The lower line (Pglobal) is the graph of the number of nodes reached by a broadcast message
from a single source node v0. The top line (Punion) is the resulting number of nodes reached in a union of sets of nodes reached from multiple
distinct broadcasts from the source node v0, where we used distinct message IDs for each neighbor. The discrepancy or distance between these two
lines represents “level-1 short-circuiting” effects.

and this flooding is governed in its current implementation by TTL- and UID-Mechanisms as described in Section 1.
Gnutella client software generally enforces limits on TTL values to at most 7, and its routing protocol makes it po-
tentially vulnerable to the short-circuiting effects we have described. During experiments that involved crawling and
mapping the entire Gnutella network, we noted that the number of reachable hosts reported by a client was substantially
less than that estimated by an off-line analysis of the generated topology map. We consistently noted discrepancies of
at least 50% as compared to the estimated size of a reachable set. After conjecturing that short-circuiting may play a
substantial role in such discrepancies, we attempted to try to prove this empirically. We found it quite difficult to obtain
highly accurate real-time statistics about the global topology of Gnutella. Hence, we devised an experimental method
of discovering a subset of the effects of short-circuiting which relied only upon communication with a set of immediate
neighbors. We called this restricted effect level-1 short-circuiting.

5.1. Level-1 short-circuiting in Gnutella

In our experiments we compared the 7-horizon of a message broadcast from v0 with the 6-horizon of distinct
message broadcasts from the neighbors of v0. As noted, distinct ID labels prevent messages from interfering with
each other, and thereby allows us to measure a subset of the total short-circuiting effect. The actual number of nodes
reached by the broadcast of the shared message is compared to the union of node sets (message horizons) reached
by the distinct broadcast messages. We noted, empirically, that short-circuiting was suggested by comparing the hop
counts of messages responding to the different broadcasts. Fig. 3 shows the results of 70 trials of an experiment
measuring level-1 short-circuiting. We note that the observed reductions in network broadcast coverage averaged
over 55%.

5.2. Network simulation studies

We now turn our attention to a series of network simulation studies in which we were able to precisely isolate the
effects of short-circuiting on synthetic network topologies. We report experiments ranging over a number of graph
topologies, including snapshots of the Gnutella network, random small-world graphs, uniform random graphs, and
some highly structured graphs, including the mesh and hypercube networks.

Snapshots of the Gnutella network were obtained by a network crawler that performed near real-time topology
discovery in parallel. Details of the crawler, statistics, and pictures of the Gnutella topology can be found in [6].
Analysis of the obtained data reveals interesting structural properties of the network, including strong “small-world”
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Fig. 4. Histogram of trials with T T L = 10 from experiment on the Watts–Strogatz topology, see Table 1. The y-axis represents the number of
trials, and the x-axis represents short-circuit broadcast ratio in percentage. Note the narrow variance around the mean broadcast ratio (MBR) of
approximately 28%.

characteristics and a power law distribution of node degrees and latencies. A class of random small-world networks
were obtained using the Watts–Strogatz model [14].

To model network latencies we used several classes of weights representing various commonly used Internet connec-
tion bandwidths. We conducted our experiments by using uniform random distributions of these weights. We applied
the SC-distance (discussed in Section 4) to measure the message horizon sizes and used this value to compute the
short-circuit broadcast ratios.

5.3. Statistical table

Each row of the following Table 1 represents results from 100 trials, broadcasting from a fixed, random source
node. In each trial we used a new set of randomly generated latencies. In each row of Table 1 we report for a fixed
T T L = t , the worst, average, and best observed message horizon sizes. We give the worst-case short-circuit-broadcast
ratio (WBR), which is obtained by dividing the worst message horizon size by the size of the reachable network, and
the mean short-circuit-broadcast ratio (MBR), which is obtained by dividing the average message horizon size by the
reachable network size.

The histogram shown in Fig. 4 represents the distribution of short-circuit-broadcast ratio values over the set of 100
trials using a TTL value of t = 10. Note that the distribution is strongly clustered around the mean of approximately
28%.

6. Observations and conclusions

We have observed the most significant impact of short-circuiting on “small-world” topologies such as our Gnutella
snapshots and Watts–Strogatz network models. For certain values of t, for these graphs, we have seen average reduction
in message horizon sizes of over 70%, and in the worst case this reduction is as large as 90%. Furthermore, in such
graphs the difference between the worst observed message horizon and the best observed message horizon can differ
by factors of 4 or more.

In our experimental studies we have observed that both random graphs and highly structured graphs such as the
mesh and hypercube tend to have, on average, less pronounced short-circuiting effects, as compared with “small-world”
graphs. In general, for a fixed T T L = t , the distribution of message horizon sizes tend to be normally distributed with
small variance, independent of network topology, as illustrated in Fig. 4.
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Table 1
This table provides statistics on the impact of short-circuiting effects in various networks as measured by message horizon sizes and short-circuit
broadcast ratios. The table reports the results of experiments on five different network topologies: Gnutella (using topology obtained from network
crawl, see [6]), Waats–Strogatz model (using parameters k = 3, p = 0.2, see [14]), random graph model (using a uniform edge model with average
degree = 8), 2-dimensional mesh, and hypercube network (order-13). The number of nodes (indicated in parentheses) for each network represents
the subgraph of the original topology reachable within the hop-bound given by the TTL. Each row of the table reports for a fixed T T L = t , the
worst, average, and best observed message horizon sizes, the worst-case short-circuit-broadcast ratio (WBR), and the mean short-circuit-broadcast
ratio (MBR)

Topology (# nodes) TTL Worst Mean Best WBR MBR

Gnutella (843) 6 246 589 1107 22% 53%
Gnutella (1124) 7 419 806 1040 37% 72%
Gnutella (1125) 8 566 915 1071 50% 81%

Watts–Strogatz (1399) 7 278 498 723 20% 36%
Watts–Strogatz (2771) 8 434 819 1364 16% 30%
Watts–Strogatz (5018) 9 765 1388 2307 15% 28%
Watts–Strogatz (7729) 10 977 2148 3420 13% 28%

Random (9021) 5 4686 5986 6875 52% 66%
Random (9998) 6 6557 8143 8809 66% 81%
Random (10000) 7 8113 9060 9443 81% 91%

2-D Mesh (28) 6 18 23 28 64% 82%
2-D Mesh (36) 7 21 29 36 58% 81%
2-D Mesh (45) 8 25 36 45 56% 80%

Hypercube (2380) 5 1120 1750 2139 47% 74%
Hypercube (5812) 7 2796 4422 5298 48% 76%
Hypercube (7099) 8 3970 5813 6644 56% 82%
Hypercube (7814) 9 6023 6844 7424 77% 88%
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