
1. FEATURE: Why Projects Fail - and What You Can Do About It

"I just don't understand it," the project manager said dejectedly.
We had just had a meeting with a client for whom we were building
a large software project. "We put our best people on the job; we
authorized overtime; we even promised bonuses if the project went
well. And now this."

The "this" to which my then-boss referred was the client's
rejection of our efforts. While they assumed that we hadn't given
the project our best efforts, we knew that we had. Yet we had
failed - and worse, we had no assurance that we would do any better
on the next project.

If this scenario sounds familiar, you're not alone. Repeated
studies have shown that the failure rate for custom software
projects is above 70%. This is an astonishing number and is
tolerated only because software is so vital to the running of
modern organizations. Why, though, do these failures occur? If we
can't blame it on not working hard enough, then what causes us to
fail?

Over the many years since the failure I've related here, I've had
a chance to study this question. I've come to the conclusion that
what fails us is not a lack of efforts, but is our efforts
themselves. What did Shakespeare say? "The fault, dear Brutus,
is not in our stars, but in ourselves." Or perhaps, in our
methodologies.

Who Needs a Methodology?

A methodology is a defined series of steps leading to the
accomplishment of a goal. Most development methodologies produce
an unwanted goal: failure. Yet it's important to realize that,
though this result is not desired, it is the natural consequence
of these methodology. To change the results, we must change our
methodology.

What methodologies are being used today? Perhaps the most popular
methodology is the no-methodology methodology (NMM). Adherents of
NMM are sometimes called "cowboy coders" and their motto seems
adapted from the movie, Blazing Saddles: "Methodology? We don't
need no stinkin' methodology."

As popular as NMM may be, there are problems. It doesn't scale
well. Division of labor doesn't exist. I might like to have
different people with different skills working on different parts
of a project, but this requires that we understand the whole well
enough to break it into its parts. NMMers only know the whole
when it's finished.

The "Best Developers" Methodology

Another popular methodology is the "Best Developers" one. This is
especially popular with pointy-haired bosses. Their pitch is
simple enough: "Hire the best coders and get out of their way."
Their motto might be "Our Developers Can Beat Up Your Developers."

What if other disciplines were to adopt this "methodology"? Would
we hear the head of the Federal Aviation Agency discussing their
new plan to "hire the best pilots - and get out of their way?"
The FAA chief wouldn't be the only one "getting out of their way."
The "Best Developers" methodology is based on the faulty premise
that project failure is due to inadequate programmers. My
experience has been that most coders are both competent and
committed to success. Failures aren't due to lack of talent or

Page 1 of 3Why Projects Fail - WebReference Update - 020103

4/28/2006http://www.webreference.com/new/020103.html

http://www.webreference.com/new/020103.html

commitment. Something else is at work.

The Proprietary Methodology

Another popular methodology is the proprietary methodology. This
methodology works tremendously well, but it's secret! We could
tell you what it is - but then we'd have to kill you. Proprietary
methodologies, by their nature, are closed and secretive. They
lack the fundamental requirement of all serious approaches: peer
review.

This may be the worst possible methodology. Clients are locked
into a single company with no assurance that the company will be
responsive to their future needs - or even (as we saw in the
meltdown of dot.coms) that it will be around at all. For
individual programmers, working in a proprietary development shop
is a career dead-end. The investment the programmer makes in
learning the secret methodology is useless outside that small
world.

Searching for a Methodology

I should confess that my interest in these topics is not merely
academic. Having been involved in my fair share of failures -
including some spectacular ones - I set out to discover what was
causing best efforts to turn into worst results. What I found was
that lacking a well-defined methodology, developers lacked a road
map to ensure that they could get from the first, heady days of a
new project to a successful end. That lack of direction, I found,
meant that often a project could be doomed before the first line
of code was written.

During my investigation, I became heavily involved in an open
standard quest for a workable methodology. That methodology is
Fusebox, and I will discuss it in this article. I find Fusebox
works very well for the many developers I work with. However, I
don't tout it as the only or the ultimate methodology. There are
many methodologies available. Which one is best is that one that
you will use - whose philosophy aligns with your own. The
methodology needed by a coder working completely alone can be very
different from one that involves a team of developers -
particularly if some of those developers are remote workers.

In order to get the full utility from a standard however, it must
be widely adopted. Fusebox is a development methodology that
arose from the ColdFusion community, though it is not confined to
that language. Fusebox begins with the assumption that there are
no bad guys in software development, although there is an awful
lot of failure, and to remove that failure, we must understand
its causes.

To observe the amount of rhetoric devoted to arguing over the
"right" platform or language or IDE or compiler, you might think
that the technical challenges of software development are the real
cause of our 70% failure rate. That's odd, because software
projects almost never fail for technical reasons.

Getting to Failure's Root Cause

Consider a less-than-successful project you've been involved in.
Did it run into trouble because the programmers couldn't handle
the rigors of recursion or matrix math or multi-dimensional
arrays? No?

To find out why projects fail, we need only ask our clients.
They'll gladly tell us: "You don't give us what we want!" Against

Page 2 of 3Why Projects Fail - WebReference Update - 020103

4/28/2006http://www.webreference.com/new/020103.html

http://www.webreference.com/new/020103.html

such an indictment, arguments over compilers and architectures are
both irrelevant and foolish.

Fusebox begins by noticing that we typically involve the client
at two points in the process. In the beginning of a job, we sit
through often painful meetings with clients or we may ask clients
to answer questionnaires. We mean well during this requirements
gathering phase, but the problem is that the beginning of a job
is too soon for a client to give us a lot of useful feedback.

The second time we involve clients is at the end of a project,
when we go through acceptance testing. Now, we get real client
feedback, but now, it's too late: The time and money for the
project are all used up.

Tools for Requirements Gathering

A great deal of the problem can be laid at the feet of the
language we use. We speak of "requirements gathering" as if
"requirements" were scattered about, waiting for us to pick
them up and drop them into a basket. Fusebox says that clients
can only tell us what they want when they see it! And with that
realization, it becomes clear that our job as developers is to
give clients something to see, so that they can tell us what they
want - not in legalistic specification documents, but in simple,
plain language.

We use two primary tools for this. Wireframes offer developers a
way to rapidly knock together a clickable skeleton. There are no
graphics and no attempt to make the application functional.
Instead, each page the client will eventually see is represented
by a simple page that tells (1) what the responsibilities of the
page are and (2) what other pages are linked to this one.

Prototypes follow wireframes. Each prototype page has a small
threaded messaging system that is automatically affixed to HTML
pages. This system allows developers and clients to communicate
with each other. The results of this interaction are saved into a
central repository. Prototyping continues until both developer
and client are satisfied that the prototype reflects exactly what
the finished application will look like. Only then is the prototype
"frozen" and coding can begin. In this way, we can find out what
the client wants before we write the code.

Who Are We?

Because we write code, we tend to think of ourselves as coders.
But our clients see us very differently. They want us to be their
guides through the complicated and dangerous process of deploying
a successful project. Our challenge is to see ourselves not as
mere coders, but as full developers.

To this end, methodologies are important. Good ones provide a
framework around which we can predictably produce successful
software deployments that benefit ourselves, our companies, and
our clients. If you would like to learn more about Fusebox,
please visit http://www.fusebox.org.

 # # # #
About the author: Hal Helms trains, writes, and consults with
developers on the Fusebox methodology. He is a Team Macromedia
member and a well-known ColdFusion speaker and author. He began
programming with Smalltalk, studying at famed Xerox PARC. He can
be reached at hal.helms@teamallaire.com. His web site is
http://www.halhelms.com.

Page 3 of 3Why Projects Fail - WebReference Update - 020103

4/28/2006http://www.webreference.com/new/020103.html

http://www.fusebox.org
mailto:hal.helms@teamallaire.com
http://www.halhelms.com
http://www.webreference.com/new/020103.html

