
Ajax Live Regions: Chat as a Case Example
Peter Thiessen Charles Chen

Adaptive Technology Resource Centre Empirical Software Engineering Lab
 University of Toronto The University of Texas at Austin
130 St. George St., Toronto, Ontario 713-557-7289

 peter.thiessen@utoronto.ca clc@clcworld.net

ABSTRACT
Web 2.0 enabled by the Ajax architecture has given rise to a new

level of user interactivity through web browsers. Many new and

extremely popular Web applications have been introduced such as

Google Maps, Google Docs, Flickr, and so on. Ajax Toolkits such

as Dojo allow web developers to build Web 2.0 applications

quickly and with little effort. Unfortunately, the accessibility

support in most toolkits and Ajax applications overall is lacking.

WAI-ARIA markup for live regions presents a solution to making

these applications accessible. A chat example is presented that

shows the live regions in action and demonstrates several

limitations of ARIA live regions.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/ Machine Systems—

human factors, human information processing; K.4.2 [

Computers and Society]: Social Issues—assistive technologies

for persons with disabilities

General Terms
Human Factors, Design, User Agents

Keywords
Accessibility, Web 2.0, Ajax, ARIA, Live Regions, User Agents

1. INTRODUCTION
With the advent of Web 2.0 and Ajax, web applications can now

provide a level of interactivity that can rival traditional desktop

applications. Many new and extremely popular Ajax applications

have been introduced such as Google Maps [6], Google Docs [7],

and Flickr [20]. However, Web 2.0 poses a new problem for

screen readers and other similar assistive technologies. Part of the

Web 2.0 advancement is the ability to access and modify the

DOM of a XHTML document and not have a full page refresh.

Modifying a DOM element creates a look-and-feel similar to a

desktop application and has allowed for useful features such as

drag-and-drop XHTML document elements.

Traditionally, Assistive Technologies (AT) have treated

information on a web page as content that can be linearized. Ajax

web applications break this assumption; new content can appear

in arbitrary locations and user interactions with the page are far

more complex. Since these Ajax web applications behave more

like desktop applications than web pages, solutions for making

desktop applications accessible can be applied to these Ajax web

applications. One of the most important aspects of making

desktop applications accessible is to inform users of important

events that are occurring on parts of the screen, even if those parts

are not focused. For example, in a chat application, the user’s

focus is on the input blank, but it is essential to inform the user of

what the other chatters have typed. On the other hand, it is

important not to overwhelm the user with a flood of information,

especially if that information is trivial.

In traditional desktop applications, there are a set of known

widgets such as buttons, trees, data cells, etc. These widgets

behave in a predictable manner; thus, an AT simply needs to

know how to support the events of a type of widget in order to

provide reasonable support for any instance of that type of widget.

However, Ajax applications do not share this uniformity. Many

Ajax applications use custom widgets created out of span and div

elements, mixed with input elements and graphics, and laid out by

CSS. Sometimes, Ajax applications will even use custom widgets

for standard HTML widgets such as a button because the

application developer wished to change the behavior and/or

appearance of that widget to fit the particular application better.

As a result, while AT can pick up DOM mutation events, it is very

difficult, if not impossible, for an AT to understand what that

event represents in the context of an Ajax application.

We developed an Accessible Ajax chat application called Reef

Chat. The goal of this chat is to demonstrate that a Rich Internet

Application (RIA) could be both accessible and aesthetically

appealing. Reef Chat has currently reached the first phase of

development and has the basic functionality of a typical accessible

chat application. The chat is targeted to work specifically with

screen readers and follows the WAI-ARIA [15] guidelines and

more specifically, the ARIA live regions markup to expose chat

events to the DOM. The future roadmap of Reef Chat includes

converting it into a Dojo [4] widget and adding more graphical

components to improve the user experience for sighted users.

Dojo [4] is an open source Ajax toolkit that allows developers to

create Ajax Web applications without having to worry about

details (such as cross browser functionality) that are often a

problem when using Javascript.

Reef Chat was developed to work with the Fire Vox[5] screen

reader and for the purpose of this paper, to demonstrate how

ARIA live regions can be used to develop a highly interactive

Web 2.0 Internet application. Hence, we see our contribution as

being both a proof of concept/demo and a discussion of “lessons

learned”.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

W4A2007- Technical Paper , May 07–08, 2007, Banff, Canada. Co-

Located with the 16th

International World Wide Web Conference.

Copyright 2007 ACM 1-59593-590-8/06/0010 ...$5.00.

7

Charles Chen is the creator of the CLC-4-TTS Suite [5]. One of

the applications in this suite is Fire Vox, an open-source, freely-

available, talking browser extension for the Firefox web browser.

It is essentially a screen reader that is designed for Firefox. It is

cross-platform compatible and can run on Windows, Macintosh,

and Linux.

The organization of the paper is as follows. In section 2, we

describe the markup for ARIA Live Regions. In section 3, we

discuss several ARIA test cases. In section 4, we demonstrate

Reef Chat using the Fire Fov screen reader as an ARIA test case

example, as well as the problems encountered and the explanation

of design decisions in the development of Reef Chat. In section 5,

we discuss potential improvements to Fire Vox and Reef Chat.

Finally, in section 6, we discuss related work, followed by the

conclusion in section 7.

2. WAI-ARIA MARKUP FOR AJAX

LIVE REGIONS

2.1 WAI-ARIA
The solution to the DOM accessibility problem is to markup the

live regions, the regions on the page which can be changed by

Ajax. Markup for live regions is part of the Web Accessibility

Initiative - Accessible Rich Internet Applications guideline (WAI-

ARIA) [15]. Live regions are only one part of ARIA, other parts

enable desktop-style Javascript widgets, specify typing restrictions

on data, or mark regions of a page with landmarks (such as the

main content). Future versions of ARIA are expected to allow

accessible diagrams as well as author-defined roles, properties and

relations. The only part of ARIA that is currently supported by

Fire Vox is the live region markup. Window-Eyes and JAWS

support the widget-related markup, but not the live region

markup. This is the limitation of ARIA support in current AT

products.

There is ARIA-ROLE and ARIA-STATE. State is the most

important. Role is secondary when it comes to live regions, but is

useful because it includes higher level roles like "log" and

"status". Specifically:

• Roles for Accessible Rich Internet Applications (ARIA

Roles) [16]: In partial fulfillment of ARIA Roadmap,

describes mappings of user interface controls and

navigation to accessibility APIs on different platforms.

• States and Properties Module for Accessible Rich

Internet Applications (ARIA States and Properties)

[17]: In partial fulfillment of ARIA Roadmap, enables

XML languages to add information about the behavior

of elements.

The ARIA set of specifications, which is currently still a working

draft, suggests adding markup to the live regions of a XHTML

document to help solve the issue of what should be done with

DOM mutation events. By looking at the markup for a live region,

an AT can understand what should be done when DOM mutation

events are fired for that region.

The following subsections present the properties for live regions,

discuss the issues with the current set of properties, and describe

the existing support in Fire Vox for WAI-ARIA markup for live

regions.

2.2 live=POLITENESS_SETTING

live=POLITENESS_SETTING is used to set the priority with

which AT should treat updates to live regions. These are only the

default priority settings for live regions; AT may provide ways for

users to override/change these priority settings.

Table 1. live=POLITENESS_SETTING

Setting Description

live=“off"

This is the default. Any updates made to it

should not be announced to the user.

live=“off" would be a sensible setting for

things that update very frequently such as

timers that change every second.

live=“polite"

The region is live, but updates made to it

should only be announced if the user is not

currently doing anything. live=“polite"

should be used in most situations involving

live regions that present new information to

users, such as updating news headlines.

live=“assertive"

The region is live. Updates made to it are

important enough to be announced to the

user as soon as possible, but it is not

necessary to immediately interrupt the user.

live=“assertive" should be used if there is

information that a user should know about

right away, for example, warning messages

in a form that does validation on the fly.

live=“rude"

The region is live. Updates to it are

extremely important. In fact, the updates

are so important that the user must be

interrupted immediately. live=“rude"

should be used sparingly and only with

great consideration as it can be very

annoying to users.

2.3 controls=[IDLIST]

controls=[IDLIST] is used to associate a control with the regions

that it controls.

Table 2. controls=[IDLIST]

Setting Description

controls=“myRegion1

myRegion2

etcEtcEtc"

controls=[IDLIST] associates an

element with one or more regions that

it controls. If it controls more than one

region, the regions are separated by a

space. When a change to one of these

regions occurs because of a user action

on the control, then the change should

be announced immediately to let users

know that their action did have an

effect.

2.4 atomic=BOOLEAN

atomic=BOOLEAN is used to set whether or not the AT should

present the live region as a whole. This is only the default setting

for the live region; AT may provide ways for users to override

whether or not the live region is treated as atomic.

8

Table 3. atomic=BOOLEAN

Setting Description

atomic=“false"

This is the default. It means that when

there is a change in the region, that

change can be presented on its own;

the AT should not present the entire

region. atomic=“false" is generally a

good idea as it presents users with

only changes and does not cause them

to hear repetitive information that has

not changed. However, web

developers should take care that the

changed information, when presented

by itself, can still be understood and

contextualized by the user.

atomic=“true"

If atomic is set to "true", it means that

the region must be presented as a

whole; when there is a change, the AT

should present the entire region, not

just the change. atomic=“true" can

make it harder for users to understand

changes as the changed areas are not

presented independently.

atomic=“true" can also be annoying as

it can force users to listen to repetitive

information that has not changed.

However, atomic=“true" is necessary

in cases where the change, when

presented by itself, cannot be

understood and contexualized by the

user.

2.5 labelledby=[IDLIST]

labelledby=[IDLIST] is used to associate a region with its labels.

Table 4. labelledby=[IDLIST]

Setting Description

labelledby=“myLabel1

myLabel2 etcEtcEtc"

labelledby=[IDLIST] associates one

or more elements that serve as labels

with the live region that they label.

These elements do not have to be

HTML <label> elements. If there is

more than one label, the labels are

separated by a space. The labels

should be presented to the user when

there is a change to the region that

they are associated with.

2.6 describedby=[IDLIST]

describedby=[IDLIST] is used to associate a region with its

descriptions.

Table 5. describedby=[IDLIST]

Setting Description

describedby=“myDesc1

myDesc2 etcEtcEtc"

describedby=[IDLIST] associates

one or more elements that serve as

descriptions with live region that

they describe. If there is more than

one description, the descriptions are

separated by a space. The

descriptions should not be presented

to the user when there is a change to

the region that they are associated

with as they are likely to be too

lengthy and would annoy the user;

however, there should be an easy

way for users to find the description

for a particular region when they

want to find out more about the

region.

2.7 relevant=[LIST_OF_CHANGES]

relevant=[LIST_OF_CHANGES] is used to set what types of

changes are relevant to a live region. Multiple types of changes

can be listed as relevant; the types are separated by a space. The

default is relevant=“additions text".

Table 6. relevant=[LIST_OF_CHANGES]

Setting Description

relevant=“additions"

relevant=“additions" states that the

insertion of nodes to the live region

should be considered relevant.

relevant=“removals"

relevant=“removals" states that the

removal of nodes from the live region

should be considered relevant.

relevant=“text"

relevant=“text" states that changes to

the text of nodes that already exist in

the live region should be considered

relevant.

relevant=“all"

relevant=“all" states that all changes to

the live region should be considered

relevant. This is the same as doing

relevant=“additions removals text".

2.8 Issues

The WAI-ARIA markup for live regions does still have a few

issues to be worked out. These include difficulties with

determining causality, giving developers the ability to group

updates, handling interim updates, and providing higher-level

abstractions for web developers.

Although WAI-ARIA has a controls=[IDLIST] property to

specify that a control will change certain live regions, if these live

regions can be changed by world events, then the AT will not be

able to distinguish between a change caused by the user and one

that is not. This can be an important distinction since changes

caused by the user should be spoken immediately to let users

know that their actions did have an effect; however, if the change

was caused by world events, then the change should be

9

announced according to the appropriate politeness setting for that

region.

Sometimes, web developers may have an application that needs to

update several pieces of information at the same time. If these

updates are expected to take a noticeable amount of time, web

developers will need a way to tell the AT when the updates are

completed and ready to be spoken. By grouping these updates

together, web developers can prevent users from hearing the same

information multiple times, as well as making a large update more

meaningful by having all of its parts presented together. The

current WAI-ARIA specification does not provide web developers

with this ability.

In most cases, the AT should not announce something that is not

currently displayed on the page since, in general, if it is not

displayed anymore, then it is not current – skipping it will help

prevent users from falling behind. However, there are cases where

obsolete items should still be announced. For example, if an Ajax

application provided a play-by-play description of a game in the

form of a log that only contained the last 5 plays, then all the

updates should be read, even if the AT were to fall behind in

trying to read all of the updates and a play disappeared from the 5

current plays on the page before it could be read. It is important in

this case to not skip updates that have since disappeared because

they contain important information that the user needs to hear in

order to make sense of the most current information. There is

currently no way for web developers to specify whether or not

interim changes are relevant.

Finally, the WAI-ARIA specification does not have defaults for

the live region properties for the roles that it has defined. Having

defaults is important as this would give web developers a higher

level of abstraction. Rather than trying to manually specify all of

the live region properties for each individual widget, web

developers should be able to specify what type of widget they

have and expect that there be reasonable defaults for how that

widget will behave.

2.9 Implementation and Support for ARIA

Overall, the WAI-ARIA markup approach is a promising solution

to the issue of Ajax live region accessibility. Rather than forcing

web developers to completely redesign their Ajax applications, it

simply asks that web developers make clear their intentions

regarding the various changing parts of a page by adding some

markup that will provide guidelines to the AT about how the

changes should be presented to the user. Although the WAI-ARIA

markup for live regions is quite new (the first draft did not come

out until September of 2006), it is already being supported by Fire

Vox.

Currently, Fire Vox supports live=POLITENESS_SETTING,

atomic=BOOLEAN, and relevant=[LIST_OF_CHANGES]. In

addition, Fire Vox also supports the use of “interim” to allow web

developers to specify whether or not interim changes are relevant

for a particular live region as mentioned in the previous section.

In addition to supporting the WAI-ARIA markup, Fire Vox also

has a “smart” default mode which will try to guess the most

suitable behavior for live regions that are not tagged with WAI-

ARIA. While untagged pages do not perform as well as they could

if they were to be explicitly tagged, these heuristics have so-far

proven reasonable in a number of untagged real-world pages, such

as Yahoo Finance [19], where page information is being

constantly updated. Fire Vox also offers a strict mode that uses

WAI-ARIA tagged regions only and an off mode that completely

silences all live regions.

3. ARIA TEST CASES
The ARIA test cases at http://accessibleajax.clcworld.net include

web application examples such as a form that validates input as it

is being entered, a chatroom (with bots), and a scoreboard.

The form example shows a typical online form for a fictitious fan

club called the “CLC Fan Club”. If a user enters something that is

not allowed (such as a user name with whitespace or passwords

that do not match), an error message will appear. Once a user has

successfully completed the sign up process, a certificate that

includes the user name and date will be displayed. Both the error

messages and the certificate will be announced when they appear.

The chatroom example allows the user to chat with scripted

chatbots. As the messages appear, they will be read to the user. In

addition, if a user tries to do something which is not allowed, such

as send a blank message or a message that is too long, an error

message will appear. This error message will also be read to the

user.

The scoreboard example shows a 4-on-4 sports game. As the

game progresses, the points and the player stats change.

Sometimes, multiple things can change at the same time, for

example, if one player scores after being assisted by another

player. In that case, there are 3 changes: the score, the number of

points scored by the player, and the number of assists by her

teammate. All of these changes are read out to the user.

4. Case Example: Reef Chat
A trend in Web 2.0 Internet applications has been increased

complexity. New features have been repeatedly added to Ajax

applications causing Web 2.0 applications to behave increasingly

more like applications in a desktop environment. [3] Reef Chat,

developed by Peter Thiessen, was designed to be responsive like a

desktop application and, in future releases, include drag and drop

features and other user interface elements by leveraging the Dojo

toolkit.

The main contribution of the chat application is in demonstrating

that a Web 2.0 application can be accessible. This is accomplished

by making chat updates accessible to AT. The chat also includes

features such as text highlighting to aid sighted users in scanning

text, contrast and font scaling options and so on. Reef Chat is also

compliant with Section 508 [14], WCAG2 [18], and WAI-ARIA

guidelines.

Reef Chat uses live regions and text highlighting to aid both

visually impaired users and sighted users. The live regions are

used to notify the AT of DOM updates when a new chat message

is received. The text highlighting helps sighted users scan a chat

log for relevant messages – the more relevant the message the

greater the attention given to the message. This feature can

optionally be disabled by the user. Below is an example

implementation of the chat in action with nine people and a

duration of 45 seconds.

10

Figure 1: Reef Chat, a 45 Second Chat

The chat widget functions by rendering new messages on the

client-side based on relevance. The purpose of ranking messages

is to assist users in scanning data and help point out meaningful

information. The ranking is based on a three tier system. Table 7

describes the message-ranking relevance schema used in the

widget.

Table 7. Chat Ranking Summary

Rank
Font Size &

Weight
Criteria

Max 14pt, 100%
Client name in message, or a

direct reply to client

Mid
11-13pt,

60-80%

Ranked depending on

similarity to client’s past

messages

Min 10pt, 50% Remaining messages

The table shows how the different ranking levels are used to

markup the weight of each message. The visual formatting of each

message is done using CSS and sectioned off into three ranks:

MAX, MID, and MIN as shown in table 7. A message that is

flagged as important (max), is given the largest font size, 14pt,

and the strongest font weight. The MAX flag is used if a message

has the client’s user name in the message. Also, a direct reply is

flagged as MAX, as are the subsequent three messages from that

user. A medium ranked message is given a medium font size

between 11-13pt. The MID flag ranking algorithm is fairly simple.

The higher the count of similar words in a message compared to

the client’s messages, the higher the rank of that message. The

remainder of the messages are flagged as low priority and given

the smallest font size of 10pt and lowest weight. As a side note,

font em percentages are actually used for font sizes and the font

point sizes shown are the defaults. This allows scalable font sizes

for users with low eyesight. Also, a message chime to help notify

the user of a new message is used as an optional preference that

can be enabled. To prevent a sudden decrease in ranking simply

because a message does not contain enough similar words, the

importance decays at a gradual rate. Therefore, a message with an

80% weight will not suddenly drop to 50%; instead, it will go

down slowly as the conversation seems less and less relevant.

For DOM updates, the chat widget uses Ajax live regions to

inform the AT. Several options exist for using live regions. The

ideal solution would be to mimic the visual formatting of the chat

widget by using multiple spoken voices in parallel with varying

volumes. The ranking system of MAX, MID, and MIN would

determine the volume for each message to be spoken.

Unfortunately, technical barriers exist and the solution is not

currently feasible. The multiple voices solution is investigated

further in section five of the discussion.

The remaining options attempt to mimic the ranking system in

Table 7. One option is to markup messages individually with

ranked live settings. Another option is to group messages based

on rank, all with the same live setting. A further option is to

simply speak messages as they are received.

The first option, assigning a live region setting to each message,

allows messages to be queued. A message could be prioritized on

the client-side and given a rank and a corresponding live region

setting. For example, a message assigned a MAX or MID priority

could be given an assertive live region setting. A MIN ranked

message could be given a polite live setting. Below is an example

of what the chat in Table 7 would look like using the described

markup.

Figure 2: Live Region Ranking Markup

Several design decisions were made when using this markup. First

the live=“rude” setting was avoided altogether for message

queuing. A message marked with a rude setting would interrupt

the current spoken message and could disorientate the user.

Second, the role=“role:log” [16] tag tells screen readers to treat

11

the elements in this block as separate entities. The consequence is

that the li elements are spoken individually and could have

varying live settings. The messages that were flagged as MAX and

MID rank, would be given an assertive live region setting. As a

result any polite message would be bumped off the queue and the

assertive marked message placed on the queue. This allows a

method for queuing messages that the AT can understand. The

downside to this approach is that the polite messages could

actually be discarded altogether and never spoken when

competing against many assertive messages for a queue slot. This

risk of “starvation” is probably a poor design choice, given that

the message relevance and ranking algorithm cannot be perfect,

nor is the goal of total accessibility being achieved if the

experience of a disabled user is diminished. (Even if it were

possible to ensure that the discarded messages were always

irrelevant, disabled users would still miss out on the full

community experience within the chat room.)

The second option, grouping and ranking messages, allows

messages to be organized and queued. This option receives a

group of messages and performs ranking operations on the

messages before the DOM is updated. Only the assertive live

region setting was used but messages were organized into two

groups of messages, relevant and not relevant. Figure 3 shows an

example of how the chat log from Figure 1 would be organized.

Figure 3: Chat Batching Option

Relevant

Dave: Hey Aaron, I fixed that bug you mentioned

Aaron: Hi Dave

Aaron: David, oh good – that bug was a pain!

Erin: Hi Aaron, how was the …

Dave: Aaron: so what’s next on the bug list? And CLC aren’t you

part of the LOTR beta?

Non-Relevant

Peter: CLC, yah it was great that he could show up. The Haiku OS

looks neat but I worry about the number of bugs in the release. I

mean I went to the Haiku Web site and got a MySQL error :)

CLC: The OS looks pretty solid and an active community is

working on bug fixes – it should be pretty solid.

CLC: Aaron: actually, yes I am – forgot about that

Laura: CLC: Nice, what server do you plan LOTR on

Erin: CLC: What’s your character’s name in LOTR? Are you part

of a guild?

Peter: Hi CLC what did you think of the Google Haiku tech talk?

CLC: Peter: impressive, I was surprised that Jean Louis Gassée

himself joined us at the talk

Laura: Has anyone else signed up for the LOTR beta?!

Ann: oh, yah!

David: My goodness is this a CLC fan club?!

Messages flagged as relevant, located in the top cell of Figure 3,

would be at the top of the queue to be spoken first. The second

cell in Figure 3, contains the remaining non-relevant messages.

The reasoning for this design decision was to allow the user to

hear the most relevant messages first, followed by successively

less relevant messages. This allows the user to decide whether or

not the remaining messages in this group of messages are worth

hearing. If not, the user can skip ahead to the next grouped batch

of messages and repeat the process. The main benefit of this

design is helping the user scan for the most relevant messages and

have those messages read first. The downside to this design is that

often the order of the messages carries some meaning in a chat

log; this meaning would be lost if the order is changed. For

example, the chat log example in Figure 1, begins with Aaron

logging in and receiving a message from Dave. Soon after a series

of fifteen messages were displayed on the screen in under 45

seconds. Fire Vox finishes speaking the first message and then has

a queue of prioritized messages to speak. The thread about the

LOTR beta originated with the question from Laura but instead

the thread appears to have begun by Dave. The original intention

of the thread, which was to see who signed up for the LOTR beta,

was lost and may have been disorientating for Aaron. This issue is

mentioned on the Mozilla Developer Center. [10] The many

events occurring simultaneously on the chat, or any Web 2.0

application, can create a synchronization problem.

The third option, speaking messages as they are received, involves

simply flagging each message with a polite live region setting and

having it spoken by the screen reader. This solution was not very

elegant, but worked with Fire Vox. When a new message is

received, it is flagged with the ARIA live region polite setting and

queued to be spoken after any remaining messages. The assertive

setting was avoided because the sequence of spoken messages

would be lost and potentially be disorientating for the user. If, for

example, a user is reviewing a chat log, line by line, s/he would be

interrupted at the end of each log message with any new messages

in the chat. This would break the sequence of the chat log and

potentially disorientate the user. The polite setting allows a user to

review the log in peace, and without interruptions. This solution

was chosen as the best design decision given the current

technology.

Throughout the development of Reef Chat, WAI ARIA live

regions were shown to be subjective in their use. A DOM update

taking place in a live region could have any of the three live

region settings assigned to it and remain consistent with the

guidelines. However, as the different options or iterations of Reef

Chat showed, the use of live regions can vastly affect user

experience. If the wrong live region setting is used, an update can

interrupt the user or flood the user with too much information.

Best practices exist, such as using the rude setting sparingly and

generally falling back to the polite setting whenever in doubt.

However, the mastery of live region settings will probably involve

trial-and-error for a Web developer to get it right.

5. DISCUSSION
The solution presented solves the immediate need of Web 2.0

Internet applications. Following the ARIA guidelines and using

Ajax live regions enables a graceful method of informing an AT

of a DOM update. However, as previously mentioned, active

environments with a large number of page updates over a short

duration of time can still pose a problem. Live regions were

shown to be sufficient for several DOM updates at a time using

different levels of politeness. However, what if the scale of DOM

updates was increased to twenty or more at a time? If even ten of

the DOM updates were labeled as assertive or rude, the AT would

12

be overflowed with information. A highly active chat environment

is an excellent example. Suppose fifty participants entered a Reef

Chat instance as described in Section 4.. The number of DOM

updates would soon overwhelm a screen reader that supported live

regions, such as Fire Vox, and the user would fall behind and be

unable to participate in the chat effectively. The ARIA live region

framework cannot support the high levels of activity in a highly

active chat environment.

Taking a step back and looking at a screen reader, a rather large

assumption has been made, that a user can and should only hear

one message at a time. In a way, this model has decided that a

human ear can only process one audio message at a time. This

assumption is obviously false. People have the ability to filter and

distinguish between multiple audio conversations or sounds at a

time. For example, take a student in a noisy pub on a Thursday

night. The environment is loud and full of sensory input, and the

ear has the difficult job of filtering music, as well as near and far

conversations. The student is attentively following and

participating in a conversation with his/her current group of

friends but is also able to jump in and out of nearby

conversations. The student can hear key words such as their own

name or a favorite topic in someone else’s conversation, and

begin attending to that conversation while still following their

original conversation, and any number of other conversations

nearby. This is known as the Cocktail Party Effect [2] and is an

example of how humans can adeptly filter among many parallel

auditory signals. By only allowing a visually impaired person to

hear one message at a time from a screen reader, we are

undercutting this natural ability. (Note that in a text-based chat

domain, for sighted users this parallel processing can be achieved

because vision is inherently parallel as well. And the relevance-

based sizing described above is intended to facilitate the visual

filtering process.) Hence, the serialization forced upon a screen

reader user seems unnecessarily limiting and artificial.

Ideally, some form of parallelism across regions should be

supported. Not only would this provide more natural

engagement in chats, but it might also be easier to support within

Ajax because less filtering would need to be built into the

software (as more would be taken care of naturally by the user’s

ear itself) and thus could also be useful in other Ajax applications.

A partial solution here would be to develop voice synthesizer

technology that could speak multiple messages in parallel in

multiple voices. Although most current synthesizers do no support

this, even if separate instantiations are used, Charles Chen has

developed a partial solution by using multiple synthesizers. After

experimenting with his CLC-4-TTS core speech libraries for

Firefox, Chen discovered that it is possible to have both the

Microsoft SAPI 5 synthesizer and the Java FreeTTS synthesizer

speak simultaneously. While this only provides two voices, it will

allow us to test the utility of a system that allows multiple

simultaneous voices. For a test program, we intend to use one

voice at a lower volume than the other in a chat. The louder voice

will be used for the main conversation, and the softer voice will

be used for background conversations.

Since synthesizer technology here currently lags (it is unlikely that

any synthesizer system could support 50+ simultaneous speakers

with different voices), we currently need alternative ways to

facilitate perceptual filtering. Reef Chat can be used to do basic

ranking or filtering of messages based on importance. The markup

described in Table 7 could be read by a screen reader and used to

give a volume to a message, effectively using different volume

levels as an imperfect, but perhaps passable, substitute for

different voices for the ear to latch onto. A message marked with

a MAX flag, would be given a 100% volume setting, a MID

flagged message would be given a volume between 50-80%, and a

MIN lagged message a volume of 50%. The screen reader could

be speaking multiple messages at a time with the most relevant in

the foreground at the highest volume, and the least relevant in the

background at the lowest volume.

One way to describe this idea is that the accessible chat system is

auditorily simulating the visual fisheye effect. [13] This effect

works by visually highlighting a text element and bringing it to

the foreground while pushing surrounding text elements to the

background. The fisheye effect aids a user in scanning

information by bringing attention to important elements. An audio

representation of the fisheye would work similarly. In an active

chat environment, at any given time, a message marked highly

relevant would be spoken in the foreground, with a lower-ranked

message concurrently spoken in the “immediate background”, and

the lowest ranked message concurrently spoken in the

“background”. Using this system a user could scan audio

messages based on a three tier relevance ranking hierarchy. The

granularity of filtering the human ear probably does not reflect a

three tier filtering system. For this reason, the solution is not a

perfect representation of the human ear’s ability to filter. Future

work is needed to study how many audio conversations the

average user could follow without being overloaded with

information. Also, the ranking algorithm used in Table 7 is fairly

simple and more complex algorithms would be required to best

support information processing. Several other technical barriers

also remain as well, especially if this model is to be extended to

support the wide diversity of Ajax applications that exist beyond

chat.

6. RELATED WORK
The issue of Web 2.0 accessibility has become increasingly

prominent. The WAI released an editor’s draft [11] of a guideline

to solve the problem of Web accessibility; the result was the use

of roles and states. The document provided a framework for

current best practices and instructions on embedding accessibility

states and roles into an HTML document. Prior to this guideline,

there was no standard way of providing markup to make a Web

2.0 Internet application accessible. Past work had been done on

adding semantics to web content that was human readable and

could be extended to widgets with dynamic behavior. [1]

Ajax toolkits and frameworks have also begun to mature, with

many new powerful projects such as Dojo [4] and Prototype [12].

Toolkits allow the simplified development of rich user interfaces,

often with complex visual elements that provide a level of

abstraction away from the Web browser. In 2006 IBM contributed

technology support to Dojo in the form of “… intellectual

property to help establish a common, open industry framework

and ecosystem around Ajax software development, IBM together

with the Dojo Foundation and others hope to foster more

innovation and adoption of Ajax.” [9] The contribution has led to

an accessibility library in the core Dojo libraries headed by Becky

Gibson at IBM. The accessibility support still needs work, with

elements such as the image generation for rounded corners not

allowing transparency for contrast levels. Dojo however does have

many accessible functions and an extensible library. The

extensibility of the Dojo library has lead to its rising popularity

and predictions [8] of it becoming the standard Ajax toolkit.

13

The release of the HearSay voice browser system in 2006, by Zan

Sun, Amanda Stent, and I.V. Ramakrishnan, advanced screen

readers by giving the user more control over how the content was

read. [21] The voice browser worked via the combination of three

elements: a browser interface object, a content analyzer, and

interface manager. The browser interface object handled retrieving

a Web page and contained features such as automatic form filling.

The content analyzer broke down the content of a Web page into a

partitioned tree structure. The interface manager handled

classifying elements of the partitioned tree using pre-trained

classifiers. The resulting system was a screen reader that could

more effectively aid a visually impaired user to navigate a Web

page.

7. CONCLUSION
Accessibility for Web 2.0 Internet applications is now possible

through the WAI-ARIA [15] guidelines. Using live regions, it was

shown to be possible to inform an AT, such as Fire Vox, of DOM

updates, and in doing so make ARIA-compliant Web pages

accessible. More active content poses a problem however, as Reef

Chat demonstrated. An AT can easily become overwhelmed with

DOM update notifications and the user fall behind when in an

active environment, such as a chat. Future work was proposed in

the discussion towards a potential screen reader system that could

speak with multiple voices in parallel and aid the user in digesting

large amounts of information efficiently, while providing a

naturally accessible interface.

8. ACKNOWLEDGMENTS
Our thanks to the Mozilla Foundation for funding our projects

and research. We also thank Stephen Hockema, Aaron

Leventhal, and Gijs Kruitbosch for their helpful comments and

suggestions and for proof-reading a draft of this paper.

9. REFERENCES
[1] Leventhal, Aaron. “Structure benefits all”. Proceedings of

the 2006 international cross-disciplinary workshop on Web

accessibility (W4A), 2006.

[2] Arons, Barry. (1992) A Review of the Cocktail Party Effect.

MIT Media Lab. 11 January , 2007.

<http://www.media.mit.edu/speech/papers/1992/arons_AVI
OSJ92_cocktail_party_effect.pdf>

[3] Kouroupetroglou , Christos, Salampasis, Michail,

Manitsaris , Athanasios. “Web accessibility (W4A): Building

the mobile web: rediscovering accessibility?”. Proceedings of

the 2006 international cross-disciplinary workshop on Web

accessibility (W4A), 2006.

[4] Dojo. “Dojo the Javascript Toolkit”. 15 January 2006

<http://dojotoolkit.org>

[5] Chen, Charles. Fire Vox. 11 January 2007

<http://firevox.clcworld.net>

[6] Google. “Google Maps”. 10 October 2006.

<http://maps.google.com>

[7] Google. “Google Docs”. 10 October 2006.

<http://docs.google.com>

[8] Gehtland, Justin, Galbraith , Ben, Almaer, Dion. Pragmatic

Ajax: A Web 2.0 Primer. The Pragmatic Programmer LLC,

2006.

[9] Market Wire. (2006). IBM Contributes Ajax Software

Development Technology to Open Source Community.

Market Wire 05 June 2006. 14 January 2007

<http://www.marketwire.com/mw/release_html_b1?release_i
d=133309>

[10] Mozilla Developer Center. “AJAX:WAI ARIA Live

Regions”. 23 January 2007

<http://developer.mozilla.org/en/docs/AJAX:WAI_ARIA_Li
ve_Regions>

[11] Pilgrim , M., Gibson , B., Leventhal , A.. “Embedding

Accessibility Role and State Metadata in HTML

Documents”. 20 January 2007

<http://www.w3.org/WAI/PF/adaptable/HTML4/embedding-
20060318.html>

[12] Prototype. 13 December 2006

<http://www.prototypejs.org>

[13] Greenberg, Saul. A Fisheye Text Editor for Relaxed-

WYSIWIS Groupware. Department of Computer Science,

University of Calgary 1996. 15 January 2007

<http://sigchi.org/chi96/proceedings/shortpap/Greenberg3/sg
2txt.htm >

[14] United States Government. Section 508: The Road to

Accessibility. 11 January 2007

<http://www.section508.gov>

[15] World Wide Web Consortium (W3C). Roadmap for

Accessible Rich Internet Applications (WAI-ARIA

Roadmap) 20 December 2006. 17 January 2007

<http://www.w3.org/TR/aria-roadmap>

[16] World Wide Web Consortium (W3C). Roles for Accessible

Rich Internet Applications (WAI-ARIA Roles) 26 December

2006. 17 January 2007

<http://www.w3.org/TR/2006/WD-aria-role-20060926>

[17] World Wide Web Consortium (W3C). States and Properties

Module for Accessible Rich Internet 26 December 2006. 17

January 2007

<http://www.w3.org/TR/2006/WD-aria-state-20060926>

[18] World Wide Web Consortium (W3C). “Web Content

Accessibility Guidelines 2.0”.

http://www.w3.org/TR/WCAG20/complete.html

[19] Yahoo!. Yahoo Finance. 27 January 2007

<http://finance.yahoo.com>

[20] Yahoo!. “Flickr”. 27 January 2007

<http://www.flickr.com>

[21] Sun, Zan, Stent, Amanda, Ramakrishnan, I. V.. Dialog

generation for voice browsing. Proceedings of the 2005

International Cross-Disciplinary Workshop on Web

Accessibility (W4A) 10 May 2005.

14

