
A Cross-Language Framework for
Developing AJAX Applications

Arno Puder
San Francisco State University
Computer Science Department

1600 Holloway Avenue
San Francisco, CA 94132

arno@sfsu.edu

ABSTRACT
AJAX (Asynchronous JavaScript And XML) applications
have received wide-spread attention as a new way to de-
velop highly interactive web applications. Breaking with
the complete-page-reload paradigm of traditional web ap-
plications, AJAX applications rival desktop applications in
their look-and-feel. AJAX places a high burden on a web
developer requiring extensive JavaScript knowledge as well
as other advanced client-side technologies. In this paper,
we introduce a technique that allows a developer to imple-
ment an application in Java or any .NET language and then
automatically cross-compile it to an AJAX-enabled web ap-
plication.

Categories and Subject Descriptors
D.3.4 [Processors]: Compilers

General Terms
Languages

Keywords
Web Applications, AJAX, Cross-Compiler

1. INTRODUCTION
The initial intent of the World-Wide Web (WWW) was

to provide access to remote documents. The HTML stan-
dard that is used to describe content for the WWW was
quickly extended to include user interface elements such as
buttons and input fields that allowed the construction of
web applications where the web browser acts as a generic
client. Although enhanced by user interface elements, the
look-and-feel of web applications still was far from the user
experience of a regular desktop application.

With the release of Google Maps, a new era of web ap-
plications began. Instead of viewing a web application as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2007, September 5–7, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-672-1/07/0009 ...$5.00.

a sequence of mostly static HTML pages that are loaded in
response to user interaction, the latest generation of web ap-
plications made extensive use of JavaScript inside a browser
to create highly interactive applications that rival desktop
applications with their look-and-feel. In fact, some new
web applications using this paradigm implement applica-
tions such as word processors or spreadsheets that tradition-
ally have only been available on the desktop. The browser
as a generic client slowly becomes the next desktop. The
acronym AJAX (Asynchronous JavaScript And XML, see
[7]) is used to describe these new generation web applica-
tions.

Writing AJAX applications requires extensive knowledge
of JavaScript, DOM manipulations, and portability issues
across different browsers. The lack of IDEs and appropri-
ate skill-set among current IT developers make the devel-
opment of AJAX applications a daunting task. The basic
assumption of this paper is that JavaScript is the assem-
bler language of the web. Ideally one does not want to be
exposed to it. In this paper, we introduce XML11 that fea-
tures a cross-compiler capable of translating regular Java
applications to AJAX applications. The outline of this pa-
per is as follows: Section 2 gives a detailed description of the
XML11 framework describing its various components. Sec-
tion 3 gives an overview of the prototype implementation of
XML11. Section 4 discusses related work and in Section 5
we provide a conclusion and outlook.

2. XML11 FRAMEWORK
The name of our framework is XML11 and it is inspired by

the old X11-Windows protocol developed by MIT in 1984.
Just like an X11-Server can render any user interface, a web
browser likewise serves as a generic client that can render
arbitrary user interfaces. Whereas the X11-Protocol focuses
on graphics (i.e., the X11-Protocol has no notion of buttons
or listboxes) the XML11-Protocol supports widgets. The
client-side components of XML11 are implemented in Java-
Script and are loaded after visiting a respective URL point-
ing to the XML11 Server. Unlike in the X-Windows world,
a web browser contains a Turing complete execution plat-
form through a JavaScript interpreter. Note that we do not
consider Java or Flash extensions because the idea of AJAX
is to only use what is commonly available in all browsers.
For this reason the client-side portions of XML11 are imple-
mented in JavaScript and XML11 cross-compiles those parts
of the application to JavaScript that are to be migrated to
the browser. The complete XML11 framework is explained

105

Figure 1: Architecture of XML11.

in detail in the following sections.

2.1 Architecture Overview
Figure 1 depicts the overall architecture of XML11. It fol-

lows the Client/Server model where the client is the browser
and the server is implemented as a J2EE Application Server.
The client uses HTTP requests to interact with the remote
server. Upon visiting an XML11-enabled application, the
complete client-side JavaScript implementation of XML11
is first downloaded into the browser. Also those parts of the
application that should be migrated to the client, are auto-
matically cross-compiled to JavaScript as explained later.

As can be seen in Figure 1, the client and server are largely
symmetrical in their internal structure. The client is com-
pletely implemented in JavaScript, whereas the server-side
of XML11 is implemented in Java. In the following we give
a brief overview of the various layers making up the XML11
architecture beginning with the lowest layer. Some of those
layers will be discussed in detail in subsequent sections.

The bottom layer shown in Figure 1 implements the trans-
port mechanism for XML11. Since XML11 runs inside a
browser, the transport mechanism uses the XMLHttpRequest

object on the client-side to issue HTTP requests to the
server. The server is implemented as a J2EE Application
Server, accepting incoming HTTP requests from the client.
The layer above the transport mechanism is XMLOB, an
XML-based Object Broker. The purpose of XMLOB is to
create an abstraction from the raw transport mechanism by
offering a simple message-based, bi-directional communica-
tion model between objects. XMLOB is capable of sending
messages asynchronously in both directions. Section 2.2 will
explain XMLOB in detail and in particular how the server
can send messages asynchronously to the client.

One component that only exists on the server-side is the
Java-to-JavaScript cross-compiler. This component is called
XMLVM because it is based on an XML-based Virtual Ma-
chine model. The task of XMLVM is to translate the client-
side portions of an application written in Java or C# to
JavaScript. The cross-compiled application is then migrated
to the client. The application shown in Figure 1 on the
client-side is the result of this translation process. XMLVM
is explained in detail in Section 2.3.

The core part of XML11 is based on a micro-kernel ar-
chitecture. The idea is to create an architecture where new
functionality can be plugged into the system dynamically
at runtime. The XML11-core is mainly responsible for the
plugin management. Various plugins enrich XML11 with
additional functionality. One plugin implements the core
widgets that an application can use for its user interface.
In the current prototype implementation of XML11 those
core widgets have the same API as the Abstract Window-
ing Toolkit (AWT). As a consequence, any AWT application
that was originally developed for the desktop can run under
XML11.

Some plugins implement custom widgets (such as a Google
Map panel) that serve as the foundation of mashups in XML11.
Other plugins are created dynamically. One example are
the application-specific proxies that support the transpar-
ent distribution of the client- and server-side of the applica-
tion. The idea of dynamically creating the proxies at run-
time leads to our notion of an implicit middleware (XMLIM)
that is further explained in Section 2.4.

2.2 Object Broker (XMLOB)
XMLOB offers middleware services to the applications

running on top of it. It is not meant to be a full-fledged
middleware such as CORBA or Web Services, but rather in-
tended as a light-weight solution sufficient for AJAX appli-
cations. Figure 2 depicts the basic architecture of XMLOB.
Objects register with an Object Broker that is responsible
for message transmission and dispatching. Objects on the
side of the client are implemented in JavaScript whereas the
objects on the server-side are implemented in Java. Objects
are addressed by a priori known unique identifiers to avoid
the need of a naming service.

One distinguishing feature of XMLOB is that its messag-
ing service is completely symmetrical: objects on either side
can send any other object a message. This is obvious for
JavaScript objects calling Java objects; the Object Broker
inside the browser can make use of the XMLHttpRequest ob-
ject to send a message to the server. The question is how an
object on the server-side can send a message to an object on
the client-side. The problem is that HTTP is a client/server
protocol and only the client can initiate HTTP requests.

The solution to this problem is a technique called deferred-
reply: the Object Broker on the client-side issues a HTTP
request, but upon receiving this request on the server-side,
the Object Broker simply defers the reply until there is a
message to be sent back to the client. This guarantees imme-
diate transmission of messages from the server to the client.
The downside of this approach is that at any point in time
there is an open HTTP request in order to guarantee that
messages can immediately be sent to the client. This solu-
tion does not scale for large number of clients when each of
the clients is using this deferred reply technique.

Deferred replies allow asynchronous updates that can be
pushed from the server to the client. Many applications do
not need this feature and therefore it is not necessary for
using deferred replies. In order to accommodate different
application needs, XMLOB supports three different com-
munication models:

• Asynchronous: This model employs the aforemen-
tioned deferred-reply technique. At any point in time,
XMLOB keeps one HTTP connection open so that

106

Figure 2: Architecture of XMLOB.

messages originating on the server-side can immedi-
ately be transmitted to the client.

• Synchronous: Using this model, XMLOB will only
issue HTTP requests when a message is to be sent to
the server. Any messages pending on the server-side
will be piggy-backed onto the HTTP response. While
this model scales to a large number of clients, messages
originating at the server will be queued until the client
issues a HTTP request.

• Polling: The polling model is a hybrid between the
aforementioned asynchronous and synchronous com-
munication models. Using the polling policy, the XMLOB
client will periodically poll for messages pending for
transmission at the server. This is the best compro-
mise between interactivity of applications and scala-
bility of the communication infrastructure.

Every application using XMLOB can choose between one
of those three communication models that best suits its
needs. A highly interactive application with asynchronous
updates will use the asynchronous communication model.
An application where the user interface only updates in re-
sponse to interaction from the end-user will use the syn-
chronous communication model.

The code fragment below shows how to send a message
from the server (written in Java) to the client (written in
JavaScript). XMLOB offers an appropriate API to make
construction and handling of messages as efficient as possi-
ble.

1 // Java - Sending a message
2 Message msg = new Message("awtManager",
3 "createWidget");
4 msg.put("id", "ELEM_1");
5 msg.put("type", "button");
6 msg.send();
7

8 // JavaScript - Receiving a message
9 function AWTManagerClass {

10 this.createWidget = function(msg)
11 {
12 var id = msg.id;
13 var type = msg.type;
14 // ...
15 }
16 }
17 XMLOB.registerObject("awtManager",
18 new AWTManagerClass());

The Java code in lines 2–6 construct and send a message.
Every message has a target object identifier (awtManager)
and method that is supposed to be called on the target
object (createWidget). Those parameters are specified in
the constructor of class Message. Actual parameters can be
added in form of name/value pairs. In the example above,
parameters id and type are added to the message before the
message is being sent to the client. Depending on the com-
munication model chosen by the application, the message
will eventually be transported to the client-side. The Ob-
ject Broker on the client-slide will unmarshal the message
and invoke the appropriate method on the target object.
Lines 9–18 in the code fragment above show the JavaScript
code for instantiating and registering the new object with
XMLOB. Note that the actual parameters can be referenced
as properties of a JavaScript object. This provides a natural
mapping and makes best use of JavaScript as an interpreted
language.

The above example only shows very simple actual param-
eters. The data model supported by XMLOB is inspired by
JSON (see [3]). There are two different types of parameters:

Objects: unordered name/value pairs.

Arrays: list of values.

Both data types can be arbitrarily nested. While this
data model does not provide the same flexibility as a full-
fledged middleware such as CORBA, in our experience this
sufficient for AJAX applications. XMLOB supports two dif-
ferent marshalling engines as shown in Figure 2. The JSON
codec marshalls the actual parameters as a JavaScript data
type and the XML codec marshalls the actual parameters as
an XML document. The fragment below shows the result-
ing PDU that would be observed on the wire based on the
simple example discussed earlier where a message is sent to
an object whose identifier is awtManager:

1 // JSONCodec
2 {xmlob:{
3 message:[
4 {method: "createWidget",
5 target: "awtManager",
6 id : "ELEM_1",
7 type : "button"}]}}
8

9 <!-- XMLCodec -->
10 <ob:xmlob xmlns:ob="http://www.xml11.org/xmlob/">
11 <ob:message ob:target="awtManager"
12 ob:method="createWidget"
13 id="ELEM_1" type="button"/>
14 </ob:xmlob>

2.3 Cross-Compiler (XMLVM)
A key component of the XML11 architecture is the code

migration framework that allows to migrate application logic
into the browser. This is done by cross-compiling the client-
side portions of the application to JavaScript and then mi-
grating the generated code to the browser. We are able to
cross-compile both Java class files as well as .NET executa-
bles to JavaScript. The translation process happens in two
stages. The binary executable (either a Java class file or a
.NET executable) is first translated to an XML-based pro-
gramming language that is modeled after a stack-based ma-
chine common to both the Java and .NET virtual machines.

107

We call this language XMLVM. Once the XMLVM program
is generated, it can be mapped to other languages such as
JavaScript via stylesheets. These two stages are explained
in detail in the following two sections.

2.3.1 XML Representations of Byte Code Instructions
The foundation of the code migration framework within

XML11 is an XML-based programming language. Since the
semantics of this language is modeled after a virtual machine
(see [11]), we call it XMLVM. XMLVM basically allows us to
represent either the contents of a Java class file (see [11]) or
the contents of a .NET executable (see [6]) through XML.
Another way to look at XMLVM is that it defines an as-
sembly language for these virtual machines. Although both
platforms share many things in common, their byte code dif-
fers nonetheless. XMLVM uses XML-namespaces to clearly
distinguish between byte code instructions stemming from
either platform. The following template shows the general
structure of an XMLVM translation unit:

1 <xmlvm xmlns:jvm="http://xml11.org/jvm"
2 xmlns:clr="http://xml11.org/clr">
3 <class ...>
4 <field .../>
5 <method ...>
6 <signature>...</signature>
7 <code>...</code>
8 </method>
9 </class>

10 </xmlvm>

An XMLVM program consists of several classes, each con-
tained in a separate translation unit. Each class can have
one or more fields and methods. The attributes of the XML-
tags, that are not shown in the template above, give more
details such as identifiers or modifiers. A method is de-
fined through a signature and the actual implementation,
denoted by the tags <signature> and <code> respectively.
Consider the following simple Java-class whose only static
method determines if an integer is odd (see [1]):

1 // Java
2 public class Check
3 {
4 static public boolean isOdd(int i)
5 {
6 return i % 2 != 0;
7 }
8 }

Class Check has one static public method called isOdd.
The method returns a boolean value indicating whether the
actual integer parameter is odd or not. Although this is a
very simple example, it allows us to show all basic aspects of
an XMLVM program. The following simplified XML shows
the representation of class Check in XMLVM:

1 <xmlvm xmlns:jvm="http://xml11.org/jvm">
2 <class name="Check">
3 <method name="isOdd" stack="2" locals="1">
4 <signature>
5 <return type="boolean" />
6 <parameter type="int" />
7 </signature>
8 <code>

9 <jvm:iload type="int" index="0" />
10 <jvm:iconst type="int" value="2" />
11 <jvm:irem />
12 <jvm:ifeq label="0" />
13 <jvm:iconst type="int" value="1" />
14 <jvm:goto label="1" />
15 <jvm:label id="0" />
16 <jvm:iconst type="int" value="0" />
17 <jvm:label id="1" />
18 <jvm:ireturn />
19 </code>
20 </method>
21 </class>
22 </xmlvm>

It should be emphasized again that the above XMLVM
program is essentially an XML-representation of the con-
tents of the Check.class class file generated by the Java
compiler. The top-level tags are identical to the XML-
template shown earlier. The <method>-tag has two at-
tributes: stack and locals. stack tells the virtual machine
the maximum stack-size needed for this method. In this ex-
ample, method isOdd will never push more than 2 elements
onto its stack. The locals attribute tells the virtual ma-
chine how many local variables are needed for this method.
Actual parameters are automatically copied by the virtual
machine to local variables upon invoking the method. Since
there is only one input parameter, only one local variable is
needed. Note that the Java compiler computes the values
for stack and locals and stores them in the class file.

The more interesting part of the XMLVM-program shown
above is the actual implementation of method isOdd. The
byte code instructions are prefixed with XML-namespace
jvm: to indicate that they belong to the Java virtual ma-
chine. .NET byte code instructions are prefixed with clr:

(for Common Language Runtime). The <jvm:iload> (in-
teger load) instruction pushes the actual parameter of the
method, referred to by local variable with index 0, onto the
stack. Instruction <jvm:iconst> (integer constant) pushes
a constant referred to by attribute value onto the stack. The
next instruction <jvm:irem> (integer remainder) pops off
the last two values (the actual parameter and the constant
2) and pushes their remainder after division back onto the
stack. The <jvm:ifeq> (if equal) instruction pops the last
element off the stack and performs a conditional jump if its
value is equal to 0. Note that flow control is represented in
XMLVM through gotos. The <jvm:ireturn> (integer re-
turn) instruction pops off the top of the stack and returns
the value to the caller of method isOdd.

It should be noted that the XMLVM instruction set fea-
tures a mix of low-level and high-level virtual machine in-
structions. In addition to the low-level instructions men-
tioned above, there exist high-level instructions such as <jvm:new>
(for instantiating new objects) and <jvm:invokevirtual>
(invoke a virtual method). These instructions go beyond the
capabilities of normal (hardware) machine languages and
therefore require substantial runtime support. Microsoft’s
.NET platform features a similar mix of byte code instruc-
tions for its virtual machine, however there are subtle differ-
ences. E.g., whereas the Java virtual machine features typed
instructions for numerical operations (e.g., <jvm:irem> for
integer remainder, <jvm:frem> for float remainder, and
<jvm:drem> for double remainder), the .NET platform only
has one generic untyped <clr:rem> instruction. The pre-
cise type of the operands has to be determined through a

108

data flow analysis.

2.3.2 Code generation
As stated earlier, XMLVM can be seen as an assembly

language for the Java virtual machine. The difficult part
is done by a Java compiler. Once a class file has been
created as the result of the compilation process, it can be
easily translated to XMLVM simply by analyzing the con-
tents of the class file. The next step consists in translating
XMLVM to another programming language such as Java-
Script or ActionScript. This translation can be done by an
XSL-stylesheet that maps XMLVM-instructions one-to-one
to the target language. Since XMLVM is based on a simple
stack-based machine, we simply mimic a stack-machine in
the target language. An example helps to illustrate this ap-
proach. The XMLVM instruction <jvm:irem> introduced
earlier pops off two values and pushes the remainder after
division back onto the stack. Here is the XSL-template that
creates JavaScript code for this instruction:

1 <xsl:template match="jvm:irem">
2 <xsl:text>
3 __op1 = __stack[--__sp];
4 __op2 = __stack[--__sp];
5 __stack[__sp++] = __op2 % __op1;
6 </xsl:text>
7 </xsl:template>

We mimic the virtual machine of XMLVM via the vari-
ables __locals (for local variables), __stack (for the stack),
and __sp (for the stack pointer). Variables __op1 and __op2

are used as temporary variables needed by some XMLVM-
instructions. Those variables are declared for every method.
Using stylesheets to translate XMLVM instructions to the
target language works as long as there is a corresponding
instruction. In some instances this translation has to be
done carefully in order to retain the semantics of the orig-
inal instruction. E.g., XMLVM features an instruction for
adding two integers, <jvm:iadd>, that works analogous to
<jvm:irem>. However, it is not correct to map addition to
the +-operator in JavaScript. The problem is that XMLVM
(since it is based on the Java VM) treats integers as 4-byte
values, whereas JavaScript has only one numeric type and
does not distinguish between integers and floating-point val-
ues. This difference has to be accounted for by using a wrap-
per function written in JavaScript that retains the original
semantics of <jvm:iadd>.

Another interesting problem is that flow control in XMLVM
is based on jump instructions, whereas JavaScript does not
feature a goto-statement. There is no straightforward way
to map the XMLVM <jvm:ifeq> instruction discussed ear-
lier to JavaScript via a stylesheet. To solve this problem,
XMLVM offers a transformation tool that removes goto-
statements from a program and replaces them with loop-,
break-, and continue-instructions. The goto-elimination al-
gorithm is based on an old paper by Ramshaw (see [14]).
Using Ramshaw’s algorithm, XMLVM first eliminates all go-
tos. Using our previous example, here is the result of this
transformation:

1 <code>
2 <jvm:iload type="int" index="0" />
3 <jvm:iconst type="int" value="2" />

4 <jvm:irem />
5 <fc:loop id="0">
6 <fc:loop id="1">
7 <fc:break condition="ifeq" id="1" />
8 <jvm:iconst type="int" value="1" />
9 <fc:break id="0" />

10 </fc:loop>
11 <jvm:iconst type="int" value="0" />
12 <fc:break id="0" />
13 </fc:loop>
14 <jvm:ireturn />
15 </code>

As can be seen, the goto-elimination algorithm introduces
new XML-tags for flow control. Since these tags do not be-
long to the original XMLVM instruction set, they are placed
in their own XML-namespace. Note that in the example
above, the <jvm:ifeq> from the original program has been
replaced by two nested loops. Once gotos have been re-
moved, it is relatively straight forward to map flow control
statements to JavaScript instructions via stylesheets. The
code below represents the JavaScript version of the class
Check after applying all necessary stylesheets:

1 // JavaScript generated by stylesheet
2 function Check()
3 {
4 Check.isOdd = function(__arg1)
5 {
6 var __locals = new Array(1);
7 var __stack = new Array(2);
8 var __sp = 0;
9 var __op1;

10 var __op2;
11 __locals[0] = __arg1;
12 __stack[__sp++] = __locals[0];
13 __stack[__sp++] = 2;
14 __op1 = __stack[--__sp];
15 __op2 = __stack[--__sp];
16 __stack[__sp++] = __op2 % __op1;
17 label0: while (1) {
18 label1: while (1) {
19 __op1 = __stack[--__sp];
20 if (__op1 == 0) break label1;
21 __stack[__sp++] = 1;
22 break label0;
23 }
24 __stack[__sp++] = 0;
25 break label0;
26 }
27 return __stack[--__sp];
28 }
29 }

The JavaScript code above was generated automatically
by applying an appropriate XSL-stylesheet to the XMLVM
version of class Check. As can be seen, there is a natural
mapping from XMLVM to JavaScript. The intention is not
to generate readable code, but correct code that uses the
semantics of the target language. It should also be obvious
that the above JavaScript code will be less efficient than the
original Java program. Our assumption is that we do not
migrate computational heavy applications to the browser.

Figure 3 shows the complete XMLVM toolchain. The
XMLVM featuring Java byte code instructions is labeled
XMLVMJV M whereas XMLVMCLR uses byte code instruc-
tions from the .NET platform. Programs for the CLR can
be converted to the Java platform by doing a data flow anal-
ysis as described earlier. Once a XMLVMJV M program has

109

Figure 3: XMLVM code translation toolchain.

been created, it can be mapped to JavaScript as described
above, or it can be mapped back to a Java class file. The
latter is useful when doing further transformations on the
XMLVMJV M program like the one described in the follow-
ing section.

2.4 Implicit Middleware (XMLIM)
The code migration framework introduced in the previ-

ous section cannot generally be used to migrate a complete
application. The reason for that is that most applications
are not self-contained but require access to fixed resources
that cannot be migrated. One example are databases that
need to reside on the server. An application can therefore
be partitioned into classes that can be migrated to the client
and classes that need to remain on the server-side. The de-
cision which classes to migrate is currently determined by
a configuration file that the application programmer has to
provide.

Problems arise when a class that has been migrated to the
client is referencing a class whose implementation resides on
the server. What is needed in this case is a middleware that
marshalls the actual parameters provided by the client and
sends them to the server. This task is typically done by a
proxy that is linked with the application and that appears
to the application as if it were the remote object. The proxy
can use XMLOB to transport the marshalled actual param-
eters.

The problem still remains how this proxy is generated.
The proxy has the same API as the remote object and is
therefore application specific. I.e., depending on the sig-
natures of the methods offered by the remote object at its
public interface, a specific proxy has to be generated. Tra-
ditionally, the generation of the proxy is dependent on some
external artifact describing the public interface of an object.
E.g., CORBA has the Interface Definition Language (IDL)
for that purpose and Web Services use the Web Services Def-
inition Language (WSDL) to achieve the same. A tool gener-
ates the proxies based on the IDL- or WSDL-specifications.

As seen in the section explaining XMLVM, detailed infor-
mation on the signatures is already present in an XMLVM

program. E.g., in the example discussed in Section 2.3.1 it
can be seen that the signature of method isOdd() is con-
tained in the XMLVM representation of class Check (de-
noted by XML-tag <signature>). Using the signature in-
formation present in an XMLVM program, it is possible to
automatically generate the appropriate proxy. The reason
we call this approach implicit is because the proxy can be
generated automatically without requiring an external spec-
ification such as IDL or WSDL. From an application pro-
grammers perspective the middleware is implicitly inserted
to connect remote objects.

Proxies have to be generated in the same language as the
application that uses them, because they need to be linked
to the application. Since XML11 requires JavaScript on the
client-side and Java on the server-side, proxies also need to
be generated for these two languages. The way this is done
is by expressing the implementation of the proxy through
XMLVMJV M and then use the regular stylesheets to gener-
ate the proxy for the target language. Based on the signa-
ture of a method, the implementation between the <code>
tags is replaced with one that marshalls the actual parame-
ters and that sends it to the remote object via XMLOB. This
implementation can make use of any XMLVMJV M byte code
instruction so that it can later be mapped via the stylesheet
to the target language.

3. PROTOTYPE IMPLEMENTATION
The prototype implementation of XML11 features a plu-

gin that is API-compatible with Sun Microsystem’s Abstract
Windowing Toolkit (AWT). As a consequence, any AWT
application can run under XML11 on the server-side. If the
application instantiates a button (class java.awt.Button),
the plugin will intercept this call and create an appropriate
message to the client-side plugin implementing the AWT re-
ferred to as the awtManager in an earlier example. We have
implemented wrapper classes that expose functionality of
the Microsoft WinForm GUI through Java API. This allows
a .NET program using WinForms to be cross-compiled to
Java byte code via XMLVMCLR that is then transformed to
XMLVMJV M .

The client-side, implemented in JavaScript, uses DOM
manipulations to create GUI elements with the specified pa-
rameters. We make use of the Qooxdoo library for those
DOM manipulations (see [13]). When the user interacts
with the application inside the browser and the appropriate
application logic has not been migrated to the client, a mes-
sage describing the event will be sent back to the server. The
XML11 server will then feed the event into the application’s
event queue where it will finally be processed.

The implementation of XMLVM is leveraging two Open
Source libraries that allow to parse Java class files as well as
.NET executable. For Java class files we use the BCEL (Byte
Code Engineering Library, see [4]) and for .NET executables
we use MBEL (Microsoft Byte code Engineering Library, see
[15]). We also use BCEL to generate Java class files when
cross-compiling from .NET executables to the Java virtual
machine. The data flow analysis and byte code transforma-
tion required for this are also done using XSL stylesheets.

We have also implemented a non-trivial application to
demonstrate a code migration scenario. This application
lists movies made in San Francisco (see [9]). For each movie,
details such as release year and synopsis are shown. Ad-
ditionally, locations where certain scenes of those movies

110

were shot, are displayed as markers in a map of San Fran-
cisco. This map is an example of a custom widget plugin for
XML11. We make use of Google Maps for this task.

The SF-Movies application is completely written in Java
using the AWT. Proxy classes offer a Java-API to Google
Maps during development of the application. When the ap-
plication is cross-compiled to JavaScript, those proxies are
replaced with the actual Google Maps implementation. The
AWT portion of SF-Movies consists of nine Java classes (not
counting the aforementioned Google Maps proxies) with a
total of 1684 lines of Java code. The resulting XMLVM
of this Java code is 8649 lines of XML. This XML is then
cross-compiled via an appropriate stylesheet to 12008 lines
of JavaScript code that will be downloaded to the browser.
This results in an increase in code size of factor 7 when cross-
compiling from Java to JavaScript code for this particular
application. We have observed similar increase in code size
for other applications.

While this results in a significant increase, we have ob-
served that network latencies play a more significant role for
web applications. The 12000 lines of code can be compressed
to 22 kB which guarantees fast download times. Interac-
tive applications will not suffer from the added overhead of
simulating a stack machine. But it would not be feasible to
cross-compile computationally intensive applications. But it
is questionable if those kind of applications should be cross-
compiled to run inside a browser in the first place. In order
to reduce the size of the generated code, we are considering
to convert the stack-based XMLVM code to a register-based
machine. This will be done as future work.

4. RELATED WORK
Several projects – commercial and Open Source – exist

that aim at providing an easy migration path for legacy Java
applications to web applications. WebCream is a commer-
cial product by a company called CreamTec (see [2]). They
have specialized in providing AWT and Swing replacements
that render the interface of the Java application inside of a
web browser. WebCream makes use of proprietary features
of Microsoft’s Internet Explorer and therefore only runs in-
side this browser.

Several Open Source projects follow the same idea of ex-
posing Java desktop applications as web applications. One
project is called WebOnSwing (see [12]). Unlike WebCream,
this project is not tailored for a particular browser. One
feature offered by WebOnSwing are templates that allow to
change the look-and-feel of the application that is rendered
inside the browser. Another project with similar features,
but not quite as mature, is SwingWeb (see [10]). A third
project called RAP (Rich AJAX Platform, see [5]) is part of
the Eclipse framework. Similar to WebOnSwing and Swing-
Web, RAP builds upon the SWT API. Processing happens
on the server-side taking advantage of the OSGi framework.

The major difference between these approaches and the
one introduced in this paper is that none of them supports
code migration. While the user interface rendered inside the
browser is similar to that of a desktop application, every
event such as pushing a button, requires an HTTP request
to the remote server. Migrating the application logic to
the browser dramatically increases the responsiveness of the
application while reducing the load on the remote server.

Google has recently released the Google Web Toolkit (GWT,
see [8]) that is also based on a cross-compilation approach.

XML11 GWT

Philosophy Desktop Applica-
tions

Web Applications

Cross-
Compiler

Byte Code Cross
Compiler

Source Code Cross
Compiler

Linking Class loader Static linking
Widget
Toolkit

AWT Replacement Proprietary Widgets

Debugging Native Debugger IE

Table 1: XML11 vs. GWT comparison.

GWT translates from Java to JavaScript, but there are sev-
eral differences to XML11. GWT places great emphasis that
the application behaves like a web application. It is possi-
ble to place bookmarks into the application. XML11 on the
other hand follows the philosophy of desktop applications.
Via XMLOB, it is possible to push updates to the browser
asynchronously (which GWT cannot do) and therefore an
XML11 application has more the look-and-feel of a desktop
application.

Another difference between XML11 and GWT is the way
the Java application is translated to JavaScript. GWT uses
a source code level cross-compiler. This requires GWT to
parse Java source code. Currently GWT only supports Java
1.4. Since XMLVM begins on byte code level, new features
introduced in Java 5 (such as generics or annotations) are al-
ready supported (since generics are handled inside the JVM
with existing byte code instructions). Beginning the transla-
tion process on the byte code level also makes other features
such as the implicit middleware easier to implement, since
XMLVM already offers all required information in easy to
parse XML-markup.

XML11 features a class loader written in JavaScript that
mimics the semantics of the JVM class loader. Only when
a class is needed by an application, it will send a request to
the remote XML11 server. GWT only allows static linking
where the developer has to choose which classes belong to
an application. All these classes are loaded during the first
visit of the GWT application. Consequently GWT does not
support reflection.

Another major difference between XML11 and GWT that
also affects application programmers has to do with the wid-
gets used to build a user interface. GWT relies on their own
widget library. I.e., GWT introduces a Google-button, a
Google-listbox, etc. XML11 on the other side leverages ex-
isting GUI libraries such as AWT or Swing. The benefit of
our approach is that application developers can use their ex-
isting skill-set without having to learn the details of another
GUI library. Our approach also makes it possible to debug
the application using existing tools as if it were a desktop ap-
plication. Table 1 summarizes the main differences between
GWT and XML11.

5. CONCLUSIONS AND OUTLOOK
Building AJAX applications is a daunting task because of

complexities of various technologies required to write end-
to-end applications. In particular the JavaScript language
itself as well as cross-browser portability issues make the
development of AJAX applications difficult. A common so-
lution in computer science is to create proper abstractions

111

that abstract away from the complexities of the underlying
system. In that sense, we view JavaScript as the assembler
language of the web. XML11 allows a developer to imple-
ment an AJAX application in Java or any of the .NET pro-
gramming languages that is then cross-compiled to portable
JavaScript.

The prototype implementation of XML11 replaces Sun
Microsystems AWT. Future work will include other plug-
ins to support Swing or SWT. More work is also planned
on the cross-compiler. Since XMLVM is based on a stack
machine model, the way the code generated during cross-
compilations mimics a stack machine which creates unnec-
essary verbose JavaScript code. Using data-flow analysis it
will be possible to transform the stack-based to a register-
based machine which would greatly optimize the generated
JavaScript code. The prototype implementation of XML11
including various sample applications are available under an
Open Source license from http://www.xml11.org/.

6. REFERENCES
[1] Joshua Bloch and Neal Gafter. Java Puzzlers: Traps,

Pitfalls, and Corner Cases. Addison-Wesley
Professional, June 2005.

[2] CreamTec, LLC. WebCream.
http://www.creamtec.com/webcream/.

[3] Douglas Crockford. JSON - JavaScript Object
Notation. http://json.org/.

[4] Markus Dahm. Byte code engineering. Java
Informations Tage, pages 267–277, 1999.

[5] Eclipse Foundation. Rich AJAX Platform, 2006.
http://www.eclipse.org/rap/.

[6] ECMA. Common Language Infrastructure (CLI), 4th
edition, June 2006.

[7] Jesse Garrett. Ajax: A New Approach to Web
Applications.
http://www.adaptivepath.com/publications/essays/archives/000385.php.

[8] Google. Google Web Toolkit - Build AJAX apps in the
Java language. http://code.google.com/webtoolkit/.

[9] Sascha Häberling and Arno Puder. Movies made in
San Francisco, 2007. http://www.sf-movies.org.

[10] Tiong Hiang Lee. SwingWeb.
http://swingweb.sourceforge.net/swingweb/.

[11] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley Pub Co,
second edition, April 1999.

[12] Fernando Petrola. WebOnSwing.
http://webonswing.sourceforge.net/xoops/.

[13] Qooxdoo. Open Source AJAX Framework, 2006.
http://www.qooxdoo.org.

[14] Lyle Ramshaw. Eliminating goto’s while preserving
program structure. Journal of the ACM,
35(4):893–920, 1988.

[15] Michael Stepp. MBEL: The Microsoft Bytecode
Engineering Library.
http://www.cs.arizona.edu/mbel/.

112

