
Mash-o-matic
Sudarshan Murthy

David Maier
Department of CS, Portland State University

PO Box 751
Portland, OR 97207-0751, USA

+1 503 725 4061

{smurthy, maier, lmd}@cs.pdx.edu

Lois Delcambre

ABSTRACT
Web applications called mash-ups combine information of
varying granularity from different, possibly disparate, sources.
We describe Mash-o-matic, a utility that can extract, clean, and
combine disparate information fragments, and automatically
generate data for mash-ups and the mash-ups themselves. As an
illustration, we generate a mash-up that displays a map of a
university campus, and outline the potential benefits of using
Mash-o-matic. Mash-o-matic exploits superimposed
information (SI), which is new information and structure
created in reference to fragments of existing information. Mash-
o-matic is implemented using middleware called the
Superimposed Pluggable Architecture for Contexts and
Excerpts (SPARCE), and a query processor for SI and
referenced information, both parts of our infrastructure to
support SI management. We present a high-level description of
the mash-up production process and discuss in detail how
Mash-o-matic accelerates that process.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Multi/Mixed media,
I.7.5 [Document Capture]: Document analysis,
H.2.5 [Database Management]: Heterogeneous Databases,
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval⎯Information filtering, Retrieval models

General Terms
Management, Documentation, Design

Keywords
Mash-up, superimposed information, SPARCE, Sidepad, bi-level
information, document transformation

1. INTRODUCTION
Mash-ups are web applications that combine information from
multiple sources [8]. They often use third-party application
programming interfaces (APIs) and display publicly available
information in a novel manner. For example, Will James has

created a map of the New York City subway system [29] using
the Google Maps API [5]. Google Mapki [7] lists other examples.

Figure 1 shows a mash-up displaying a map of the Portland State
University (PSU) campus [35]. The data for this mash-up comes
from over 50 web resources. On the left is a map displayed using
the Google Maps API. On the right is a list of landmarks. A
numbered marker on the map represents one or more landmarks.
For example, Marker 16 represents the landmark Simon Benson
House, and Marker 12 represents two landmarks: King Albert
Building and Meetro Cafe. Clicking on a marker in the map or on
a landmark in the list pops up an information window above the
corresponding marker. For each landmark related to the marker,
this information window shows the name of the landmark, the
address, an introductory text (such as departments housed), and a
link to more information. Figure 1 shows the information window
for Marker 16.

Figure 1: PSU campus-map mash-up

The tabs displayed at the top control the kind of information
displayed. Tab names reflect types of landmarks. Selecting a tab
above the map displays markers that correspond to landmarks of
that type. Selecting a tab above the list lists only landmarks of
that type. The tab named All (selected in Figure 1) displays all
markers (and lists all landmarks). In this configuration, clicking
on the tab named Housing above the list of landmarks will show
only housing landmarks in the list, but the map will continue to
display all markers.

The sources of a mash-up’s data can vary in terms of format
(HTML, PDF), structure (different address formats), and location
(local file system, the web). Further, data might need to be
transformed and elaborated before use. For example, a map-based
mash-up needs map coordinates, but sources such as campus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DocEng'06, October 10–13, 2006, Amsterdam, The Netherlands.
Copyright 2006 ACM 1-59593-515-0/06/0010...$5.00.

205

directories provide only addresses. Finally, mash-ups are unlikely
to use the complete contents of a single source; they tend to use
only fragments of a source’s contents. Consequently, a mash-up
developer might spend considerable effort in information
selection and extraction activities.

Mash-o-matic can help a mash-up developer clean and combine
extracted data and transform the combined data to the format a
mash-up needs. When used in conjunction with a class of
applications called superimposed applications [31], it can also
help him extract and elaborate data from different sources. A
superimposed application provides a means to reference
heterogeneous data of varying granularity, and to superimpose
new information (such as annotations) and structures (such as
lists) on the referenced information.

In this paper, we provide a brief overview of the mash-up
production process and discuss in detail how Mash-o-matic assists
mash-up developers in that process. We use the PSU campus-map
mash-up shown in Figure 1 to demonstrate the utility of Mash-o-
matic.

With this paper, our contributions are: a description of the mash-
up production process and a novel means to implement that
process. From an implementation perspective, our contribution is
a fully functional system to assist in producing map-based mash-
ups. In the process, we also demonstrate a sophisticated
application of our infrastructure to manage SI and referenced
information.

In addition to producing the PSU campus map, we have used
Mash-o-matic to produce a detailed map of grocery stores, called
the Portland Metro Food Markets [34] for the Oregon
Department of Agriculture (ODA). Outside our group, Mash-o-
matic is being used to map embassies of different countries
[Gopalakrishna, personal communication]. (The Mash-o-matic
web site, http://sparce.cs.pdx.edu/mash-o-matic, will be updated
as new mash-ups become available.)

The outline for the rest of this paper is as follows: Section 2 gives
an overview of the mash-up development process and the various
components of Mash-o-matic. Section 3 details an implementation
of Mash-o-matic to produce map-based mash-ups. Section 4
describes an implementation of Mash-o-matic to produce map-
based mash-ups. Section 5 discusses the potential benefits of
using Mash-o-matic, customization of generated mash-ups, and
the role of SI in generating mash-ups. Section 6 gives an overview
of related work, and Section 7 presents some concluding
comments.

2. OVERVIEW
We provide here an overview of the mash-up production process
and show how the different components of Mash-o-matic fit into
this process. We also give an overview of a superimposed
application and the parts of our infrastructure for SI management
that Mash-o-matic uses.

2.1 The Mash-up Production Process
Figure 2 shows the primary steps involved in producing a mash-
up. Dotted arrows in this figure indicate data flow, solid arrows
indicate control flow, and the boxes indicate process steps (or
mash-up developer activities).

In the Select and Aggregate step, a mash-up developer collects
selected information fragments from different sources. For
example, he might copy landmark names and addresses from web
pages and paste into a text file. In the Organize and Classify step, the
developer structures (or restructures) the collected data. He might
also elaborate the collected data. For example, he might group
landmarks based on postal code. In the Clean and Transform step, the
developer refines the organized data and re-purposes it for output
in a particular format. For example, he might clean address
information and transform the collected information and
elaborations into XML format suitable for display on a map. The
transformation step might involve use of external services. For
example, the developer might use a web service to transform
addresses to map coordinates. In the Display step, the developer
implements the code needed to display the re-purposed data,
possibly leveraging an existing display API. For example, he
might use the Google Maps API to display information on a map.
Alternatively, he might just invoke previously implemented code.

Figure 2: The mash-up production process.

The examples we have used thus far to describe the mash-up
production process involve maps, but the process is not specific to
map-based mash-ups. For example, one might produce a mash-up
that displays information on historical events, collected from
online encyclopedias, on a timeline.

A mash-up (specifically, the Display step) need not output
information in a graphical manner; it could output text or HTML.
For example, Yahoo! News [17] displays news aggregated from
different news services as structured text in a web page. Finally,
the steps in the mash-up production process might be performed
manually, semi-automatically, or automatically, and the first three
steps might be performed iteratively before displaying results.

In this paper, we use Mash-o-matic to produce map-based mash-
ups. We use a superimposed application called Sidepad [33] to
collect and organize data, express transformations as XSLT style
sheets [19], and display results on a map using the Google Maps
API. Section 2.3 mentions examples of mash-ups not based on
maps. Section 5.2 discusses customization of Mash-o-matic for
mash-ups not based on maps.

The following is the mapping of steps in the mash-up production
process to various components of Mash-o-matic (Section 3
provides details):

Select and Aggregate: A superimposed application to identify
information fragments and elaborate the fragments.

Organize and Classify: A superimposed application to structure the
information fragments referenced and their elaborations.

Select and
Aggregate

Organize and
Classify

Clean and
Transform

Display
Docs DBMS

Services Services

206

Clean and Transform: Queries over the information fragments
selected and their elaborations.

Display: An appropriate display function or program to present the
results of transformation.

When using Mash-o-matic, a mash-up developer may use any
toolset to select and organize information, but using a
superimposed application enables the developer to more easily
select, organize, extract and elaborate information fragments from
heterogeneous, distributed sources. It also allows the developer to
express transformations declaratively.

2.2 Superimposed Information and Sidepad
Superimposed information [31] (SI) refers to new information
such as comments, and new structures such as lists, placed over
existing base information such as HTML documents. In this
setting, a user creates and manages SI in superimposed
applications (SAs), which in turn use existing base applications
such as web browsers to activate (or show in context) sub-
documents, and to retrieve information such as text excerpts for
sub-documents without activation.

Our approach to SI uses an abstraction called mark [25] to
reference sub-documents of any format. We have implemented
the mark abstraction for several base information types such as
PDF, HTML, Microsoft® Word, and several audio and video
formats. Support for new base types can be easily added without
affecting existing applications. The mark abstraction is defined
and implemented in the Superimposed Pluggable Architecture for
Contexts and Excerpts [37] (SPARCE), our middleware for SI
management.

Sidepad [33] is an SA we have developed using SPARCE and the
aforementioned mark implementations. Figure 3 shows a Sidepad
document. The boxes labeled Type, Name, and Info are items.
The boxes labeled Simon Benson and Albert are groups,
which are collections of items and other groups. An item has a
name and a comment text. For example, in Figure 3, the item
labeled Type in the group labeled Simon Benson has the
comment text ‘General’; the item labeled Name in the same group
does not have a comment text. An item can also maintain a
reference to a sub-document in the form of a mark. For example,
the aforementioned item labeled Name is associated with a mark
to a text fragment inside the HTML page shown in Figure 4. (The
use of marks is not visible in Figure 3.)

Figure 3: A Sidepad document.

Marks can be created manually using the add-ins we have
developed for some base applications. Figure 4 shows a mark to a
text selection in an HTML page being manually created. In this
case, the user first selects the text to reference and clicks on the
Create Mark menu item. He then performs a “Paste” operation in
Sidepad, which creates an item associated with the text selection
in the HTML page. Marks can also be created programmatically
using the SPARCE API. For example, one can develop a script to
create a mark into each row or into each cell in the HTML table
shown in Figure 4.

Double-clicking an item in Sidepad activates the mark associated
with that item. That is, it opens the base document in an
appropriate base application and “highlights” the referenced sub-
document. For example, activating the mark associated with the
item Name in the Simon Benson group results in a screen
similar to that shown in Figure 4, except the menu shown is not
exposed.

With a mark associated with a Sidepad item, it is also possible to
see context information such as text excerpt and containing
paragraph for the mark from within Sidepad (that is, without
activating the mark). Developers can also programmatically
access context information using the SPARCE API.

Figure 4: Creating an HTML mark.

2.3 Bi-level Queries
We have also developed a facility to query and transform the
combination of superimposed and context information. That is, SI
such as names and comment texts of Sidepad items can be
combined with context information retrieved from marks, and the
combined information can be queried and transformed. The
combined information is called bi-level information, and queries
over bi-level information are called bi-level queries [36].

Figure 5: A Sidepad document transformed to HTML.

207

Figure 5 shows a transformation of the Sidepad document of
Figure 3 to a hierarchical view in HTML, obtained using a bi-
level query. The Sidepad document is at the root of the hierarchy
and each Sidepad group in Figure 3 starts a sub-tree in the
hierarchy. Each sub-tree includes the items contained in the
corresponding group. For each item, the transformation shows the
name of the item followed by the comment text, or the text
excerpt retrieved from the associated mark if no comment text
exists. (Text excerpts are italicized.) For example, the
transformation shows the name and comment text for the item
labeled Type of the group Simon Benson, but it shows the
name and the text excerpt for the item labeled Name of the same
group because that item’s comment text is empty and the item is
associated with a mark. The URL attached to the text containing
an item’s name (denoted by an underline) can be used to activate
the mark associated with that item.

The transformation in Figure 5 is generated using an XSLT style
sheet over an XML representation of bi-level information. Figure
6 shows partial XML bi-level information for the example
Sidepad document. It contains a Group element for each Sidepad
group and an Item element for each Sidepad item. It uses a Mark
sub-element to encode the mark associated with an item, and each
Mark element contains an XML representation of the context
information for that mark, encoded in the Context sub-element.
With this representation, the text excerpt of all referenced
information can be retrieved using the XPath [18] expression
'//Mark/Context/Content/Text'.

We have developed several useful and interesting transformations
over bi-level information generated using Sidepad. For example,
we have transformed strand maps [20] to the Scalable Vector
Graphics format [21], concept maps [38] to the format suitable for
the GetSmart concept-map tool [32], and course syllabus
information to timelines. These examples and the example in
Figure 5 are instances of the mash-up production process outlined
in Section 2.1 (Figure 2). None of these mash-ups are based on
maps.

The transformations are performed using a bi-level query
processor we have developed as a part of our infrastructure for SI
management. The query processor supports queries over XML bi-
level information generated from any SA (not just Sidepad) and
the queries can be expressed in XPath, XQuery [23], and XSLT.
<Document name="PSU Campus Map">

<Group name="Simon Benson" …>
<Item name="Type"> … </Item>
<Item name="Name" …>
<Mark ID="HTMLMark…" …>
 <Context>
 <Content>
 <Text>Simon Benson House</Text > …
 </Content > …
 </Context>
</Mark>

</Item>
<Item name="Info"> … </Item>

 </Group>
</Document>

Figure 6: XML bi-level information generated from a Sidepad
document.

3. THE MASH-O-MATIC MODEL
In this section and the next, we describe the use of Mash-o-matic
in conjunction with Sidepad. In Section 5 we discuss the use of

Mash-o-matic with other SAs and without any SA. Also, in the
sequel we use the term “user” to mean a person that uses a mash-
up. We use the term “developer” to mean a person that uses
Mash-o-matic to create a mash-up.

Figure 7 shows a reference model for Mash-o-matic used to
generate map-based mash-ups. Solid arrows in this figure show
control dependencies, and dotted arrows show data flow. The
shaded area shows components of Mash-o-matic.

Figure 7: Mash-o-matic reference model for map-based mash-

ups.
Mash-o-matic uses a Sidepad document (such as that shown in
Figure 9) to collect and organize information (labeled SPAD in
Figure 7). It uses a bi-level query to transform the collected
information to a format the mash-up requires, and to generate the
mash-up itself. The query uses third-part web services to translate
addresses to map coordinates (latitude and longitude). Running
the query results in four documents: markers.xml that contains
information about markers (used to populate the left side of
Figure 1), landmarks.xml that contains lists of landmarks
(used to populate the right side of Figure 1),
dataSources.xml that contains a list of all sources consulted
to prepare the mash-up data, and index.html, the document a
user browses.

The code for the mash-up is in the static JavaScript file mash-o-
matic.js (labeled JS in Figure 7; the generated HTML
document references this script). The script uses the Google Maps
API to display maps and markers, and Ajax [27] to read data and
to manipulate the user interface. The script also uses a XSLT style
sheet to display information windows for markers.

Figure 8 shows the information model of map-based mash-up. As
shown, a mash-up has a title, a center (specified as map
coordinates), and a default zoom level for the map. It is associated
with a set of markers, which are locations on a map. (The term
marker is not to be confused with the term mark we introduced in
Section 2.2.) A marker has a type (such as Dining and
Housing), map coordinates, and the location of its icon (a file or
directory specification). A marker is associated with landmarks,
which are physical or logical entities with addresses. A landmark
has a type, a name, an address, and a few other attributes
(described later).

A marker’s coordinates and the addresses of associated landmarks
are expected to be related. The coordinates for a marker related to
only one landmark could be the coordinates for the landmark’s
address. The coordinates for a marker with more than one
landmark could be the coordinates for any one of its landmarks,
or it could be the coordinates of a representative (common) area.

Of the six attributes Figure 8 shows for a landmark, only the
Type and Name attributes are required. The Address attribute

Mash-o-matic

Result

Bi-level Query Processor Sidepad

Geo-coder Map API

XML,
HTML

SPAD Bi-level Query JS

208

is optional, but we expect it will generally be used. The attributes
Acronym, Block, and Info are additional attributes specific to
the PSU campus map. We do not require them in order to render
the map, display the markers, or list landmarks. Developers can
change this set of attributes.

Figure 8: Information model of a map-based mash-up.

4. GENERATING MASH-UPS
In this section, we present the details of generating a mash-up
using Mash-o-matic. We use the PSU campus-map mash-up for
illustration.

4.1 Collecting Information using Sidepad
The PSU campus-map mash-up uses information from PSU’s
Architectural, Engineering and Construction Services (AECS)
web site [11], the PSU Dining web site [12], Portland Citysearch
[10], and web sites of various PSU departments.

The PSU AECS web site provides a listing of landmarks on
campus. Figure 4 shows a partial list. For each landmark, the list
provides a name, an acronym (which is an AECS-assigned
identifier), a block (which is a city-assigned identifier), and a link
to a page dedicated to the landmark. The dedicated page provides
the address of the landmark, a picture, and a brief description.

Figure 9 shows the partial Sidepad document we used to collect
information for the PSU campus map. The full Sidepad document
contains a group for each marker on the campus map. Each
marker group contains up to three items: one each for type,
coordinates, and location of icon. A marker’s group also contains
a sub-group for each associated landmark. A landmark’s group
contains six items: one each for type, name, acronym, block,
address, and introductory information for the landmark. This
superimposed information structure corresponds to the
information model in Figure 8. Out of the box, Mash-o-matic is
designed to work with Sidepad documents that use this structure.
Section 5 discusses the use of other structures.

Figure 9 shows groups for two markers. The highlighted group
corresponds to Marker 16 in Figure 1. (The later transformation
process automatically numbers markers from north to south.) It
contains a sub-group for the landmark ‘Simon Benson House’.
Only two items in the sub-group for this landmark contain
comment text; the other items have only names. The text for such
items is obtained from the context of the associated marks (using
a bi-level query).

Figure 9 also shows a group named Config. This group provides
configuration information for the mash-up. The item labeled
Title provides a title, the item labeled Center provides
coordinates for the map’s center. The item labeled Zoom defines

the default zoom level. The item labeled Key supplies the Google
Maps application key [5].

All Sidepad groups, except the configuration group, may be
named anything, but the items must be named exactly as shown.
The names of the groups and items are not visible to users, but the
bi-level query that generates the mash-up data expects certain
item names.

The complete Sidepad document in Figure 9 contains information
for over 50 landmarks, collected from over 50 web pages. The
process of collecting this information was relatively easy: We first
created a template group for a marker, just like the highlighted
marker group except that the items in the template are mark-less.
We then cloned the template group (that is, copied and pasted) for
each marker. For groups with more than one landmark, we cloned
just the sub-group for the landmark. We manually created
appropriate marks into web pages (see Figure 4) and associated
the marks with items.

Figure 9: Sidepad document for the PSU campus map.

4.2 Transforming Information
Mash-o-matic uses a bi-level query to transform the Sidepad
document of Figure 9 to the XML format a mash-up expects. The
query performs four key tasks: it retrieves text excerpts from the
marks associated with Sidepad items, computes map coordinates
for markers if necessary, transforms the Sidepad data and the text
excerpts retrieved to XML according to the schema a mash-up
expects, and generates an HTML document containing the UI
elements. The bi-level query is a composition of four XSLT style
sheets and is processed using the bi-level query processor
integrated into Sidepad.

Figure 10 shows a fragment of the XML document
markers.xml generated by the transformation. The first
Marker element corresponds to the highlighted Sidepad group
in Figure 9. This element shows the details for the landmark
‘Simon Benson House’ corresponding to the information window
shown in Figure 1. The second Marker element corresponds to
Marker 12 in Figure 1. It shows two Landmark elements, one

* Type
Coordinates
Icon Base

Marker
Type
Name
Address
Acronym
Block
Info

Landmark

Title
Center
Zoom Level

Mash-up

1

1
*

209

each for King Albert Building and Meetro Cafe. The details of
these landmarks are not shown.

The element Config contains the configuration data generated for
the mash-up (from the group labeled Config of Figure 9). The
sub-elements named Marker are generated automatically: The
mash-up uses them to create tabs for marker types and to
determine icon locations.

The list of landmarks shown in Figure 1 is a transformation over
the marker information shown in Figure 10. Because the list of
landmarks changes only when the mash-up information changes,
this transformation is applied only when the mash-up information
is generated, and the results are stored in the document
landmarks.xml. This document contains one table element
for each landmark type. At run-time the mash-up loads the
contents of an appropriate table element from this document into
the list area (based on which tab above the list of landmarks the
user selects). Maintaining the list of landmarks separate from the
marker information enables a mash-up to “asynchronously” load
the two kinds of information.

The content of an information window for a marker is generated
at mash-up run-time using a transformation over the
corresponding XML Marker element. For example, the
information window shown in Figure 1 is generated by
transforming the first Marker element in Figure 10. This
transformation is performed using an XSLT style sheet named
markerInfo.xslt. Developers may customize this style
sheet.
 <Mashup>
 <Markers>
 <Marker type="General" lat="45.512362" lng="-122.685292">
 <Landmark type="General" name="Simon Benson House"

acronym="SBH" block="229">
 <Address>1803 SW Park Avenue, Portland, Oregon 97201-

3220</Address>
 <Info>Visitor Center, Alumni Center</Info>
 <MoreInfo>www.fap.pdx.edu/…/index.html</MoreInfo>

 </Landmark>
 </Marker>
 <Marker lat="45.512742" lng=" -122.687426" type="Housing"

iconBase="blueRedIcons">
 <Landmark type="Housing" name="King Albert Building>…
 <Landmark type="Dining" name="Meetro Cafe>…
 </Marker>
 </Markers>
 <Config>
 <Title>Portland State University Campus Map</Title>
 <Center lat="45.51112884101…" lng="-122.68355369567…" />

<Zoom level="1" />
 <Marker type="General" iconBase="greenIcons" /> …
 </Config>
</Mashup>

Figure 10: Fragment of XML mash-up information.

4.3 Geo-coding
Geo-coding, which is the process of obtaining map coordinates, is
a key activity when displaying landmarks on a map. Figure 10
shows some coordinates encoded in the attributes lat and lng (for
latitude and longitude respectively). We maintain coordinates per
marker, not per landmark. We choose this approach because when
landmarks are situated too close to each other, plotting each
landmark as a marker can make it hard to distinguish them on a
map.

Merging landmarks into a single marker is easy with Mash-o-
matic. The developer simply needs to move the Sidepad group

representing a landmark into an appropriate marker group. For
example, the second marker group in Figure 9 contains sub-
groups for two landmarks. Transforming the changed Sidepad
document to XML automatically completes the process.

The bi-level transformation Mash-o-matic uses automatically geo-
codes markers, if the Sidepad document does not already specify
coordinates. (It uses the address of the first landmark associated
with the marker for geo-coding.) It can use either geocoder.us [3]
or the Yahoo! geo-coder [16] (the choice is determined by a
parameter; other geo-coders can easily be added). Mash-o-matic
uses scripts embedded in an XSLT style sheet to integrate with
these geo-coders. It uses a helper COM (Component Object
Model) class [24] to work-around the script engine’s sandbox
because neither coder offers a JavaScript interface. (Both services
offer interfaces based on Representational State Transfer [26] or
REST).

To get an idea of the potential savings using an automatic geo-
coder, we geo-coded some landmarks by hand when producing
the PSU campus map1. To support hand coding, we altered the
mash-up to display coordinates of a selected location. The process
of hand-coding was simple, but time-consuming: We first located
each landmark using Google Local (http://local.google.com) and
located it again using the altered mash-up. We updated the
Sidepad document with the coordinates the mash-up returned.
Coding 33 landmarks took about 3 hours. In comparison,
automatic coding takes almost no time: The Yahoo! geo-coder
can code about four addresses each second with no user
intervention [22]. However, the results do need to be manually
verified.

Hand-coding might be necessary in some cases, even when
automatic coding succeeds. For example, addresses of landmarks
can result in markers too close to each other, but the landmarks
might be too significant to be merged into one marker. In this
case, it might be acceptable to use coordinates that are slightly off
for one of the markers. Again, such changes are easily made in
Mash-o-matic. The developer simply enters the hand-coded
coordinates for the appropriate marker in the item Coords. The
transformation process then uses the entered coordinates instead
of computing them.

Because the accuracy of marker locations reflect on the quality of
the mash-up, we recommend developers check the results of geo-
coding on the map the mash-up displays. We recommend they
merge landmarks and choose to hand-code based on their needs,
and transform the Sidepad document again. We expect the fine-
tuning to be complete in two or three iterations.

4.4 Validating Information
The Mash-o-matic transformation process validates the Sidepad
document before generating the XML data for the mash-up: It
does not generate the mash-up data if there are errors in the
Sidepad document (data or structure). Figure 11 shows some
example errors. An Error element describes an error. Its type
attribute helps developers understand the location of error, and the

1 We began hand-coding because we had evaluated only
geocoder.us, and were not pleased with it. Later we evaluated the
Yahoo! geo-coder, but continued hand-coding for calibration
purposes.

210

Description sub-element contains the text of error description.
For example, the first error in Figure 11 indicates an error in the
Config group of the Sidepad document. An Error element may
also include additional helpful information. For example, the last
but one error in Figure 11 shows which landmark does not have a
type assigned.
<Mashup>

<Errors>
<Error type="Config">

<Description>Map center not defined or invalid
center</Description>

</Error>
<Error type="Marker">

<Description>One or more types of markers do not have
default icon location</Description>
<Marker type="General" iconBase="" />

</Error>
<Error type="Marker">

<Description>One or more markers do not have a
type</Description>
<Marker type="">

<Landmark name="Cramer Hall">1721 SW Broadway,
Portland, Oregon 97201</Landmark>

</Marker>
</Error>
<Error type="Landmark">

<Description>One or more landmarks do not have a
type</Description>
<Landmark name="Art Building">2000 SW Fifth Avenue,
Portland, Oregon 97201-4907</Landmark>

</Error>
<Error type="Geo-coding">

<Description>Error 6: Possibly invalid address (The exact
location could not be found, here is the closest match:
1809 Sw 11th Ave, Portland, OR 97201)</Description>
<Landmark name="King Albert Building">1809 SW
Eleventh Avenue, Portland, Oregon 97201</Landmark>

</Error>
</Errors>

</Mashup>

Figure 11: A sample of errors detected during validation.
The last error in Figure 11 demonstrates an interesting situation in
automatic geo-coding. A human could easily see that the address
specified and the “closest” match reported are the same. The
Yahoo! geo-coder successfully codes this address but generates a
warning. Developers can direct Mash-o-matic to ignore such
warnings a geo-coder might generate. To reduce the possibility of
errors and warnings, Mash-o-matic cleans addresses before geo-
coding. For example, it removes new line characters from
addresses before coding.

To give developers an idea of the accuracy of the geo-coders we
have tried: With warnings turned off, the Yahoo! geo-coder
returned acceptable coordinates for 19 of 20 landmarks. (The
address of the landmark in question is somewhat oddly assigned.)
However, geocoder.us returned acceptable coordinates for only
two landmarks: It placed landmarks in the middle of an
intersection, or placed them on the wrong side of a street.

5. DISCUSSION
This section discusses the potential benefits of using Mash-o-
matic, aspects of customization for mash-ups generated using
Mash-o-matic, and the role of SI in Mash-o-matic.

5.1 Benefits of using Mash-o-matic
As described in Section 3, there are three parts to Mash-o-matic: a
Sidepad document to collect information, a query to transform bi-
level information, and a script to display markers and landmarks.

A developer may use any combination of these parts. The benefits
obtained vary accordingly.

Table 1 provides estimates on time spent in preparing the PSU
campus-map mash-up using Mash-o-matic, and the time spent to
develop Mash-o-matic itself (excluding the development of
Sidepad and our infrastructure for SI management). The table
shows three sets of activities (indicated by dashed lines):
producing the PSU campus map, designing the Sidepad document
structure and developing the bi-level query, and developing the
mash-up code and the UI (the script and the HTML). Effort
indicated in the first set of activities would be required to generate
any mash-up using Mash-o-matic. The effort shown in the other
two sets is potential savings due to using Mash-o-matic.

The first set of activities (Activities 1 and 2 in Table 1) shows the
effort to produce the PSU campus map (5.5 hours total). The map
consists of 45 markers and 53 landmarks. The information for the
map comes from 54 base documents via 188 marks. We collected
this information in two hours. We spent 3.5 hours geo-coding, of
which 3 hours were spent hand-coding 33 landmarks. Automation
saved us the effort to code the other 20 landmarks, but we did
spend about 0.5 hours fine-tuning the codes generated
automatically. We believe automated coding of all landmarks
could have helped us develop the campus map in under four
hours. Also, we created marks into web pages manually.
Programmatically creating marks can potentially save time, but it
assumes regions to be marked can be expressed in a script, and
there is effort involved in scripting.

Table 1: Estimated time to develop Mash-o-matic and to
produce the PSU campus map

Activity Time (hours) Remarks

1. Collect PSU information in
Sidepad document

2.0 For 53 landmarks

2. Geo-code PSU landmarks
by hand

3.5 For 33 landmarks
and tuning

3. Queries to convert Sidepad
document to XML

2.0 For XML
schemas 1 to 4

4. Revise Sidepad document
structure

0.5 For XML schema
5

5. Revise queries to convert
Sidepad document to XML

1.5 For XML schema
5

6. Add validation 1.0 For XML
transformation

7. Automate geo-coding 5.5 Research, code

8. Mash-up development 25.0 Learn, research,
code

Total 41.0

The second set of activities (Activities 3-6 in Table 1) help
demonstrate a benefit of using Sidepad and bi-level queries to
collect, organize, and prepare information for the mash-up. Over
the course of its development, the mash-up’s schema changed five
times. The XML data initially contained only elements named
Marker (one element per landmark), and all the information
related to a marker were encoded as XML attributes. At the end of
the development, the XML data contains one Marker element per
group of landmarks. A Marker element contains elements named

211

Landmark, one per landmark at that location. The elements
Marker and Landmark use a combination of XML attributes and
sub-elements to encode information. The XML fragment in
Figure 10 corresponds to the final schema.

With each revision of the mash-up schema, we revised only the
bi-level query that generated the XML data, but we used the same
Sidepad document (of Figure 9). We did restructure the Sidepad
document when going from Schema 4 to Schema 5 (because the
last schema needed new information elements). This revision to
the Sidepad document took only about 30 minutes (we mostly
used Copy and Paste operations).

The third set of activities (Activities 7 and 8 in Table 1) are
related to developing the HTML and the JavaScript source, and
automating geo-coding. The time to complete these activities is
potential savings with each application of Mash-o-matic.

5.2 Customization
We have presented details of generating a mash-up that uses the
Google Maps API, but developers might wish to change some
aspects of the generated mash-ups.

Geo-coding: Mash-o-matic currently supports the Yahoo! geo-
coder and geocoder.us for automatic geo-coding. A developer
may use other geo-coders by enhancing the wrapper COM
component that interacts with geo-coders, or develop a new COM
component, or alter the XSLT style sheet that generates the
document markers.xml. We recommend using COM
wrappers (or other similar technologies) because script engines
restrict a script to interacting with data inside a sandbox,
potentially limiting the extent and nature of integration with geo-
coders. Also, scripts embedded in XML queries can be slow
(partly because they are interpreted).

Structure of the Sidepad document: A developer may use a
Sidepad document structured quite different from that shown in
Figure 9. In that case, he may need to alter the XSLT style sheets
that generate the XML mash-up data, and possibly the style sheet
that generates the document index.html. He may also need to
change the XSLT style sheet markerInfo.xslt that is used to
prepare contents for the information window popped up when a
user clicks on a marker.

Structure of the XML mash-up data: A developer may change
the structure of the mash-up XML data by changing the
appropriate XSLT style sheets. He may also need to change the
JavaScript source code.

User interface: A developer may wish to use a different layout
for the UI. To do so, he needs to change the document
index.html. He may also alter the XSLT style sheet that
generates that HTML document if he intends to generate many
mash-ups with the same UI. The current JavaScript source code
looks for three specific elements (using specific element IDs) in
the HTML layout. The developer may freely change the HTML
layout as long as the three specific IDs are associated with HTML
elements.

Mapping tool: Mash-o-matic generated mash-ups can use the
Google Maps API and Yahoo! Maps Simple API [15]. A
developer may use other mapping tools such as Virtual Earth [14]

by changing the JavaScript source code. He may also need to
change data structures and the UI.

The Mash-o-matic implementation we have described generates
map-based mash-ups, but mash-ups do not need to be map-based.
For example, the mash-up My10Wishes.com [30] displays
information obtained using the Amazon Web Services [2].
Developers may use Mash-o-matic to generate mash-ups not
based on maps, but it is likely they will need to change the
Sidepad and XML structures, the XSLT style sheets, and the
JavaScript source code. That is, Mash-o-matic serves only as an
example of a mash-up generating tool in this case. However, the
conceptual description of Mash-o-matic offered in Section 2.1
applies to any mash-up.

5.3 Example Customization and Savings
We briefly compare the Portland Metro Food Markets mash-up
we produced for the ODA to the PSU campus-map mash-up to
help appreciate the ability to customize the mash-up production
process and the ability to customize the mash-ups generated.

We developed the ODA mash-up in about 16.5 hours. Table 2
shows the estimated time spent to develop this mash-up. In
comparison, we built the PSU mash-up in 5.5 hours. However, the
ODA mash-up involves much more data and has richer features. It
plots more than 150 grocery stores distributed over eight
geographical regions in the Portland metropolitan area.

The data for the ODA mash-up was gathered using a script to
process MS Word documents. The script generates an XML
document that Sidepad would have generated had we manually
populated a Sidepad document. The simulated Sidepad document
includes only type, name, and address information for landmarks.

The UIs of the two mash-ups are quite different. Much of the
changes in the UI were accomplished using configuration values,
and by changing the placement of UI elements in the document
index.html. We customized the XSLT style sheet used to
display information windows for markers.

Both mash-ups use the same bi-level query to generate mash-up
data and the same JavaScript code to display data. That is, we did
not spend any time to develop transformations or to develop the
code to display markers when developing the ODA mash-up.
Also, we automatically geo-coded all but two addresses.

Table 2: Estimated time to produce the ODA mash-up
Activity Time (hours) Remarks

1. Clean input data 8.0

2. Script to gather data 2.5
Select and
aggregate data

3. Customize index.html 2.0

4. Customize markerInfo.xslt 1.0

5. Customize icons 3.0

Customize UI

Total 16.5

5.4 Role of SI
Using SI to prepare mash-up data can be beneficial, but it is not
necessary. Using SI gives a mash-up developer two key benefits:
He can superimpose appropriate structures over existing
information, and extract only the necessary information from data

212

sources. An SA such as Sidepad provides the former benefit, and
a bi-level query processor provides the latter.

The use of Sidepad in collecting and organizing data for a mash-
up also deserves some discussion. We have used Sidepad to create
a “schema by convention”: We have used an item’s name as
attribute’s names, and the item’s comment text as that attribute’s
value. In associating a mark with an item, and using it when the
comment text is empty, we have effectively extended the domain
of an attribute to include the text excerpt retrieved from the mark.
We have used groups to conveniently collect attributes (name and
value pairs). That is, we have used a group as a named tuple, with
the group name being the tuple name. In addition, we have used a
hierarchy to distinguish between marker groups and landmark
groups: Outermost groups are always marker groups (with the
exception of the group named Config), and these groups always
contain landmark groups. Because Sidepad does not limit the
number and names of items inside a group, this schema by
convention, allows attributes to be added to or removed from
tuples. Also, tuples do not have a fixed schema. For example, the
marker groups in Figure 9 have different schemas.

Despite its advantages, Sidepad might not be the right SA for
collecting and organizing information for some mash-ups. For
example, if the ability to freely locate items and groups spatially
is not needed, a simple hierarchical structure (such as that a file
system supports over directories and files) might suffice. Also,
based on our experience developing the PSU campus-map mash-
up, Sidepad documents with information for over 50 landmarks
can be unwieldy. However, using a different SA does not
adversely affect Mash-o-matic because our bi-level query
processor can work with any SI represented as XML.

Mash-up developers do not need to use an SA at all. They can use
the JavaScript source code, the HTML document, and the XML
structures of a Mash-o-matic generated mash-up as a template for
their mash-ups. However, they would need to manage and
validate the HTML and XML documents manually, or using
means other than Mash-o-matic. A developer can use the bi-level
query processor even if he does not use an SA because the
processor can also work with traditional XML data, or he can use
any traditional XML query processor.

6. RELATED WORK
The Yahoo! Maps Simple API [15] provides a REST-based
service to display markers on a map hosted in an HTML page. To
display landmarks, a developer submits landmark information in
the GeoRSS [4] format. (Mash-o-matic is able to generate
GeoRSS documents.) The service then returns an HTML page
containing a map with markers for each landmark. However, the
format of the resulting HTML page is fixed by the service.
Yahoo! Maps does provide a JavaScript API, which gives the
developer control over the user interface. Mash-o-matic can be
customized to work with this API (as described in Section 5.2).

Several web sites are available for interactive map building. For
example, Mapbuilder.net [6] and Platial.com [9] allow users to
place markers on a map by pointing at a location on a map (or by
specifying a street address). They allow users to label markers and
attach notes to them. Platial.com also allows attaching video clips.
Both systems allow collaborative map creation and maintenance.
In contrast to Mash-o-matic, both systems fix the structure of data

associated with maps and markers. They also fix the UI. The
systems are not mash-ups because they do not gather data from
existing sources; users enter data which the systems then display
on maps.

Three representative systems presented in past ACM symposia on
Document Engineering [1] related to Mash-o-matic are: wVIEW,
the Universal Parsing Agent (UPA), and the harmonization and
annotation services in the VIKEF framework.

The wVIEW system [39] generates web applications given
content, navigation, and presentation models expressed in XML.
It uses XSLT to process mapping rules within and among the
models, and to generate the web applications themselves. A
generated web application is in the form of XML documents and
related scripts. In Mash-o-matic, a Sidepad document provides the
content model for a mash-up, and the mapping rules are evaluated
using an XML query language (although we have used only
XSLT in this paper). Mash-o-matic does not use navigation and
presentation models, but those models can be introduced easily.
The wVIEW system does not extract information from different
sources, but doing so is not its stated goal.

The UPA [40] provides a means to specify and extract document
fragments using regular expression and natural language patterns.
The extracted fragments can be labeled automatically and output
as XML, which can then be transformed using XSLT style sheets.
However, the UPA does not retain a reference to the source of an
extracted fragment. Using the UPA is similar to programmatically
generating marks (and possibly labeling) when collecting data for
a mash-up. The XML output from UPA is similar to bi-level
information, but it is not exactly bi-level because the absence of
references blurs the line between the added label and the extracted
data. However, UPA’s XML output can potentially be
transformed into the format a mash-up requires.

The VIKEF framework [28] uses natural-language processing
algorithms to automatically identify document fragments for
semantic annotation. The fragmentation procedure identifies all
possible fragments of a given document and attaches semantic
annotations to the fragments. The annotations, the text of
document fragments (that is, excerpts), and the references to
document fragments are stored in the Resource Description
Framework [13] (RDF) format. The RDF data may then be
queried in a manner similar to bi-level querying. It is conceivable
that the semantic annotations might be used to identify
information such as names and addresses, and potentially be
transformed to mash-up data.

For brevity, we omit work related to SI and bi-level queries as
they are covered in our past publications [25, 31, 36, 37].

7. CONCLUSION
Mash-o-matic illustrates information-management aspects of a
new class of applications. It demonstrates how a variety of
technologies, components, and information can be integrated to
produce non-trivial data-driven web applications.
Mash-o-matic is freely available for non-commercial use. At the
time of this writing, the third-party components used in
developing Mash-o-matic are free, at least for non-commercial
use. We urge readers to consult individual vendor’s licensing
policy before employing Mash-o-matic.

213

In future, we like to consider ways to make Mash-o-matic easier
to use. For example, developers might benefit from an SA that
can facilitate collection of information for a large number of
landmarks (of the order of hundreds).

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. This work
was supported in part by the National Science Foundation grants
0511050 and IIS-0534762.

9. REFERENCES
[1] The ACM Symposium on Document Engineering.

http://www.documentengineering.org.
[2] Amazon Web Services. Amazon.com.

http://www.amazon.com/gp/aws/landing.html.
[3] geocoder.us. Locative Technologies. http://geocoder.us.
[4] GeoRSS: Geocoded RSS Basics.

http://worldkit.org/doc/rss.php.
[5] Google Maps API. Google. http://google.com/apis/maps.
[6] Mapbuilder.net. http://www.mapbuilder.net.
[7] Mapki. http://www.mapki.com.
[8] Mashup. Wikipedia. http://en.wikipedia.org/wiki/Mashup.
[9] Platial.com. http://www.platial.com.
[10] Portland Citysearch. IAC/InterActiveCorp.

http://portland.citysearch.com.
[11] PSU Campus Maps and Building Floor plans. PSU AECS.

http://www.fap.pdx.edu/floorplans.
[12] PSU Dining Services. PSU Dining Team.

http://www.psudining.com/.
[13] Resource Description Framework. W3C.

http://www.w3.org/RDF.
[14] Virtual Earth Standard Control. Microsoft Corporation.

http://msdn.microsoft.com/library/default.asp?url=/library/en
-us/VEMCSDK/HTML/Introduction.asp.

[15] Yahoo! Maps Web Services. Yahoo! Inc.
http://developer.yahoo.com/maps.

[16] Yahoo! Maps Web Services - Geocoding API. Yahoo! Inc.
http://developer.yahoo.net/maps/rest/V1/geocode.html.

[17] Yahoo! News. Yahoo! Inc. http://news.yahoo.com.
[18] XML Path Language (XPath) Version 1.0. 1999.

http://www.w3.org/TR/xpath.
[19] XSL Transformations (XSLT). 1999. W3C.

http://www.w3.org/TR/xslt.
[20] Atlas of Science Literacy. 2001. Washington DC: American

Association for the Advancement of Science and the
National Science Teachers Association.

[21] Scalable Vector Graphics (SVG) 1.1 Specification. 2003.
W3C. http://www.w3.org/TR/SVG.

[22] Comparing Geocoders: Ontok Geocoder, geocoder.us,
Teleatlas and Yahoo Geocoder. 2005. Ontok Geocoder.
http://www.ontok.com/geocode/compare.

[23] XQuery 1.0: An XML Query Language. 2005. W3C.
http://www.w3.org/TR/xquery.

[24] Brockschmidt, K. Inside OLE 2. 1994: Microsoft Press.
[25] Delcambre, L., et al. Bundles in Captivity: An Application of

Superimposed Information. In proceedings of ICDE 2001.
2001. Heidelberg, Germany. p. 111-120.

[26] Fielding, R.T. Architectural Styles and the Design of
Network-based Software Architectures. 2000
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[27] Garrett, J.J. Ajax: A New Approach to Web Applications.
http://adaptivepath.com/publications/essays/archives/000385.
php.

[28] Jacquin, T., Fambon, O., Chidlovskii, B. A web-based
document harmonization and annotation chain: from PDF to
RDF. In proceedings of the 2005 ACM symposium on
Document engineering. 2005. Bristol, UK.

[29] James, W. OnNYTurf.
http://www.onnyturf.com/subwaymap.php.

[30] Krasilshik, L. My10Wishes.com.
http://bowgett.com/my10wishes.

[31] Maier, D., Delcambre, L. Superimposed Information for the
Internet. In proceedings of WebDB 1999. 1999.
Philadelphia, PA. p. 1-9.

[32] Marshall, B., et al. Knowledge Management and E-Learning:
the GetSmart Experience. In proceedings of 3rd ACM and
IEEE Joint Conference on Digital Libraries (JCDL-2003).
2003. Houston, TX.

[33] Murthy, S. Sidepad User Guide. 2005.
http://sparce.cs.pdx.edu//apps/Sidepad/userguide.

[34] Murthy, S. Portland Metro Food Markets.
http://sparce.cs.pdx.edu/mash-o-matic/oda-1.1.

[35] Murthy, S. Portland State University Campus Map.
http://sparce.cs.pdx.edu/cmap.

[36] Murthy, S., Maier, D., Delcambre, L. Querying Bi-level
Information. In proceedings of 7th International Workshop
on the Web and Databases. 2004. Paris, France.

[37] Murthy, S., Maier, D., Delcambre, L., Bowers, S. Putting
Integrated Information in Context: Superimposing
Conceptual Models with SPARCE. In proceedings of First
Asia-Pacific Conference of Conceptual Modeling. 2004.
Dunedin, New Zealand. p. 71-80.

[38] Novak, J.D., Cañas, A.J. The Theory Underlying Concept
Maps and How to Construct Them.
http://cmap.ihmc.us/Publications/ResearchPapers/TheoryUn
derlyingConceptMaps.pdf.

[39] R. de Andrade, A., Munson, E.V., Pimentel, M.G. A
document-based approach to the generation of web
applications. In proceedings of 2004 ACM symposium on
Document engineering. 2004. Milwaukee, Wisconsin, USA.

[40] Whiting, M.A., et al. Enabling massive scale document
transformation for the semantic web: the universal parsing
agent. In proceedings of 2005 ACM symposium on
Document engineering. 2005. Bristol, UK.

214

