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Abstract 
 

A prime number sieve is an algorithm for finding 

all prime numbers in the range [2,n].  For large 

n, however, the actual run time of existing 

algorithms on a single processor computer is 

prohibitive.  Fortunately, the classic Sieve of 

Eratosthenes and its extensions are suitable for 

massively parallel architectures or networks of 

workstations.  Two mappings of the third 

extension sieve are presented.  One is for a 

massively parallel SIMD architecture and the 

other is for a network of workstations using the 

PVM message-passing library. 

 

 

1. Introduction 
 

In addition to number theorists, prime 

numbers are of great interest to two groups: code 

makers and code breakers.  Public key / private 

key encryption is based on large prime numbers, 

as are the methods of decrypting.  The code 

makers encrypt by choosing two large prime 

numbers p and q, whose product n becomes part 

of a key.  The code breakers try to reverse this 

process through a variety of factoring algorithms.  

Previous practical parallel sieve efforts by 

Bokhari [2] and Landsdowne [5] demonstrated 

prime generation through 10
6
. 

 

2. The Classic Sieve and Other 

Popular Solutions 
 

In the original algorithm attributed to the 

fourth century B. C. library Eratosthenes, all the 

numbers from 2 to n are written on a piece of 

paper.  Starting with 2, all multiples of 2 greater 

than 2 are crossed off the page.  The next number 

after 2 which is not crossed off is 3, so all 

multiples of 3 greater than 3 are removed.  This 

process continues until n is reached, the largest 

possible factor of n.  Remaining numbers, when 

the algorithm completes, are prime. 

 

This sieve is classified as additive, as the 

composites are identified by adding p, the prime 

under consideration, to the current composite.  

This algorithm has super-linear time complexity 

because a composite number is crossed off as 

many times as it has prime factors.  It was shown 

in [13] that the overall time complexity of the 

original sieve is O(n log log n) and the bit 

complexity (the number of bits of storage 

required) is O(n). 

 

The original sieve considers the possibility 

that any number in the range 2..n may be prime, 

and therefore must check even obviously 

composite numbers such as 4, 6, 8, and so forth.  

Extensions, or wheels [10] eliminate these 

obviously composite numbers from 

consideration by pre-sieving them via a 

particular initialization pattern, or by using a 

function to map the reduced set onto the integers.   

 

It is generally accepted that Eratosthenes 

derived the first extension, which does not 

contain multiples of 2 greater than 2, i.e., V = 

{2}   w where w = {2i + 1 | i  }.  In doing 

so, Eratosthenes not only halved the quantity of 

numbers he had to write and cross off, but he 

also halved the time to complete the sieve.  The 

second extension [7] contains no multiples of 2 

greater than 2 or multiples of 3 greater than 3, 

i.e., V = {2, 3}  w where w = {6i  1 | i  }.  

Generalizing, the k
th

 extension has no multiples 



of the first k primes [6].  Furthermore, if all the 

primes through n are known, then the range 

( n] may be segmented [1] into N pieces which 

may be sieved independently, reducing the space 

complexity to O( n + ) where  = (n - n)/ N  is 

the size of the segment. 

 

The goal of a linear sieve is to reduce the time 

complexity by a factor of log log n over the 

classic sieve to O(n);  however, this is at the 

expense of additional arithmetic complexity.  

Examples of these are shown in [8] and [4].  It 

was then shown in [9] that these approaches are 

multiplicative and hence, have a higher time 

complexity. 

 

The goal of the sub-linear sieve as given by 

Pritchard [9] is to reduce the asymptotic time 

complexity to O(n/log log n) and to maintain the 

additive arithmetic complexity of the classic 

sieve.    In linear sieve algorithms, a vector V = 

(2, 3, 4, …, n} is initialized and each composite 

is removed exactly once.  To make a sieve sub-

linear, it is not only necessary to remove each 

composite once, it is also necessary to place 

fewer composites into V initially.  Pritchard 

generates V dynamically, adding primes and 

only a select few composites per iteration.  Some 

of the composites are removed, while others are 

used to generate larger primes in future 

iterations; however, fewer composites are added 

each iteration than in the linear time sieves.  The 

final iteration removes all remaining composites 

from V. 

 

Though the linear and sub-linear sieves look 

attractive at first glance, they suffer from a 

number of problems when considering a 

practical parallel implementation.  First, the 

fastest and most obvious implementations 

require one word of storage per element of V.  

Composites removed from V still occupy 

valuable space in memory.  Attempting to bit 

pack the elements, or to use dynamic memory 

allocation introduces a prohibitive amount of 

overhead.  Second, the linear and sub-linear 

algorithms require some form of global state, and 

thus are not suited for parallel message passing 

architectures.  Finally, though both the linear and 

sub-linear sieves are asymptotically faster than 

the classic sieve, it has been shown in [3] and 

[13] that variations on Eratosthenes original 

algorithms are the most practical for feasible 

inputs. 

 

3. The Third Extension of the Sieve of 

Eratosthenes 
 

Extensions and wheels remove “obviously” 

composite numbers (numbers which are 

composites with at least one factor of a very 

small prime) from V before the sieving process 

begins.  The first extension does not consider 

multiples of 2, the second does not consider 

multiples of 3 and the third does not consider 

multiples of 2, 3, and 5.  Wheels define a bit 

pattern which can be used to initialize a bit 

vector so that the composites of small primes are 

already crossed out.  Extensions take this one 

step further by defining a mapping between the 

elements in a bit vector and the integers 

relatively prime to the first k primes, thus, no 

bits are wasted. 

 

We define and use the following symbols: 

 

k the product of the first k primes defined by 

 

 

 

Ck the set of integers less than and relatively 

prime to k. 

 

mk the cardinality of Ck defined by 

Sk the set of integers through which to sieve 

defined by 

 

 

The third extension defines k = 3 in the above, 

and the following are derived: 

 

 

 

3  =  2  3  5  = 30 

C3  =  {1, 7, 11, 13, 17, 19, 23, 29} 

m3  = C3  = 1  2  4 = 8 

S3  = { 1, 7, 11, 13, 17, 19, 23, 29, 31, 17, 41, 43, 

47, 49, 53, 59, 61, …} 

 

By mathematically arranging the elements of 

S3 a clear pattern emerges that will allow this 

sieve to be additive; that is, once the first 

composite is found, subsequent composites are a 

fixed offset away.  Rearrange S3 into a two 

dimensional grid mk columns wide as shown in 



Table 1.  Composites of the prime p are always p 

rows away from one another in the same column. 

 

Because m3 = 8, it is convenient to represent a 

row of S3 in a one byte data structure.  For the 

standard sieve, all that remains is to identify the 

first composite of a prime p in each column.  

Subsequent composites will be found p rows 

down in the same column, as seen in Table 1 for 

multiples of 7.  By defining two operations, we 

construct a table to locate the first multiple [11]. 

 

rindex(n) = n/ k  

cindex(n) = i  (Ci  Ck)  (Ci = n mod k) 

 

Briefly, rindex(n) returns the row of the first 

multiple of n, and cindex(n) returns the column 

of the first multiple of n.  However, multiples 

exist in all columns.  These formulas can be used 

to construct a table to find the rows at which 

multiples exist in the remaining columns.  The 

table is constructed by generating the ordered 

pairs of [rindex(n), cindex(n)] for all n = i  j,  

i,j  Ck and is shown in Table 2. 

 

As noted, S3 has the property that each 

number in this table may be stored in  one byte 

of data, so the table itself is small at 128 

elements.  By comparison, the table for S4 would 

have 4608 elements while  the table for S5 would 

require well over one megabyte of storage. 

 

To find the first multiples in each column of 

the prime p, let r = rindex(p) and c = cindex(p).  

Use c to select a row from Table 2.  Let the 

vector A represent the rindex entries and the 

vector B represent the cindex entries from the cth 

row.  Now, the position of all the composites of 

p may be found by choosing the rows from the 

vector r  C3 + A  and the columns from B.  For 

example, to locate the first multiple of 37 in all 

the columns, calculate r = rindex(37) = 37/30  = 

1 and c = cindex(37) = 1.  Using zero based 

indexing, choose the row 

{[0,1],[1,5],[2,4],[3,0],[3,7],[4,3],[5,2],[6,6]} 

from Table 3 and create the vectors 

 

  A = {0, 1, 2, 3, 4, 5, 6, 7} 

  B = {1, 5, 4, 0, 7, 3, 2, 6}. 

 

The rows in which the multiples may be found 

are 

 

 S = 1  { 1,7,11,13,17,19,23,29} + 

{0,1,2,3,4,5,6,7} = {1,8,13,16,21,24,29,36}. 

 

When S is recombined with the column entries in 

B, the ordered pairs of (row, column) of  

 

 {(1,1), (8,5), (13,14), (16,-), (21,7), (24,3), 

(29,2), (36,6)} 

 

comprise the positions of the first 3 composites 

of 37 in S3. 

 

3.1. Segmenting the Third Extension 
 

A segmented sieve divides the numbers {2 … 

n} into N segments of length  = (n - n) / N.  

Each segment is sieved independently, reducing 

the storage requirements by a factor of N.  

Segmenting requires that all the primes through 

n be known in advance, or that these be 

calculated in the initial stages of the algorithm 

and stored for use in subsequent iterations.  

Since these primes must be stored in O( n) 

space, no space complexity is saved by choosing 

N less than n, so choosing a segment of size 

approximately n is ideal [12]. 

 

Table 2 and several simple calculations 

produce the row and column entries in S3 of the 

first multiples of a given prime.  However, in a 

segmented sieve, S3 is divided into sections, and 

the starting row number for each section will be 

different.  Thus, the offset to the first multiple 

will also be different.  The starting row number 

of a segment can be used to adjust the values in 

Table 2 so that the first multiples of a prime p 

may be located in that segment.  This adjustment 

is used in both a single processor segmented 

sieve and a data parallel sieve.   

 

 Let R be the starting row number of a 

segment for an iteration of a segmented sieve.  

The first composites in this subset of S3 will be 

found at 

 

 

where S is the vector or row entries calculated 

for the segment starting with row 0 (Table 1).  

For example, let R = 300 (perhaps this is the 

third iteration of 100 rows of the table).  From 

the previous example for the prime 37, S = {1, 8, 

13, 16, 21, 24, 29, 36} are the rows in which the 

first composites are found.  Applying the above 

formula to this vector yields the following: 

 



(300 – 1)/37   37 – (300 – 1)     = 34 

(300 – 8)/37   37 – (300 – 8)     =   4 

  …      … 

(300 – 36)/37   37 – (300 – 36) = 32. 

 

The new vector S = {34, 4, 9, 12, 17, 20, 25, 32} 

is recombined with the B vector to yield the 

position pairs {(34,1), (4,5), (9,4), (12,0), (17,7), 

(20,3), (25,2), (32,6)}. 

 

4. Parallel Mappings of the Third 

Extension 
 

We now present a MIMD implementation 

using PVM (Parallel Virtual Machine) over a 

network of SPARCstations and a SIMD 

implementation on a MasPar MP-1 with 4096 

processing elements for the sake of 

demonstrating different mapping strategies for 

two opposing parallel environments.  It is our 

intent to focus on mapping designing issues and 

tradeoffs rather than benchmark timings that are 

influenced by current technology.    

 

4.1. MIMD Row Farming 
 

Consider a network of workstations and a 

farming algorithm.  The approach is to treat S3 as 

a standard segmented sieve and assign a 

contiguous block of numbers (a subset of the 

rows of S3) to each processor.  With each row of 

S3 eight columns wide, a single row of S3 is 

represented in one byte.  The algorithm will 

make eight passes through memory and must 

calculate a vector of eight  (row, column) pairs 

per prime.  A good degree of parallelism is 

present in this approach.  However, since several 

different architectures are present in the network, 

it is best to distribute the work dynamically as 

processors become available rather than assign 

work statically.  In essence, the farming 

algorithm starts N worker processes, sends them 

a set of initial data and a job assignment, and 

waits for the processes to return their results.  

The master process also performs tasks, which 

differentiates a farming algorithm from a 

master/slave algorithm.  When the master 

process receives a result, it sends out a new job 

assignment to the available worker.  The dangers 

in this type of setup are not easily resolved: the 

master process may become a bottleneck if too 

many workers are spawned; the master process 

may respond too slowly to a return value from a 

worker; the master process is a single point of 

failure; and given that communication is 

inherent, parallelism can be limited. 

 

The row farming algorithm is divided into 

two major components: the master algorithm and 

the worker algorithm.  The master algorithm 

spawns N worker processes and sends them each 

a section of S3 to process.  By sending the 

starting row (R), the number of rows through 

which to sieve ( ) and the number of iterations 

through those rows (itr), the worker process has 

enough information to create and sieve its 

segment.   The master process sends the same 

number of iterations and array size to each 

worker, however, this need not be the case.  

Given the memory and processor characteristics 

of the worker machine, it may be more efficient 

to iterate more times through a smaller array, or 

fewer times through a larger array.  Additionally, 

the same sizes need not be sent every time to the 

same worker, provided the performance penalty 

of dynamic memory allocation between 

iterations is small.  Each worker pre-generates all 

the primes through n which will be used in the 

segmented sieving process.  It is more efficient 

to generate them locally and in parallel rather 

than pay the communication price for the master 

process to generate them and send the set to each 

worker.  The workers then enter a loop where 

they receive (R, itr, ) as their work assignment.  

They iterate itr times over  simulating a 

segment of size itr  , removing multiples of 

each p from S3 starting at row R. 

 

In the MIMD farming model, each processor 

is assigned a new task as soon as it finishes its 

last task, which increases concurrency and 

efficiency.  Higher numbered iterations still take 

longer than lower numbered iterations, but all 

processors are in use.  A distinct advantage to 

this approach is that the model scales well to 

more processors.  In empirical studies, we found 

that when the tasks are evenly divided among the 

processors, the speedup is nearly linear.  

Obviously, when slower processors are added to 

the pool they limit the total speedup. 

 

4.2. SIMD Column Segmenting 

 

On a massively parallel architecture, we find 

that there are several naïve mappings.  Row 

segmenting, as described above, is one of them.  

The MIMD farming algorithm could be easily 

adapted to a synchronized environment such as 

the MasPar where some of the master process 



duties are performed by an array control unit and 

the worker processes are performed by the 

processing elements (PEs).  There are many 

limitations to this approach, the most striking 

being lower numbered PEs are idle more than 

higher numbered PEs , thus limiting parallelism.  

The synchronization of this model does not 

permit lower numbered PEs to sieve another 

range while the higher numbered ones complete 

the previous range.  This is why we found the 

approach suitable for a MIMD environment but 

not massively parallel SIMD.   

 

Rather than segment S3 by rows, consider the 

columns: each PE may hold a portion of a single 

column, reducing the number of calculations for 

offsets from eight to one.  Since S3 has eight 

columns, the assignment of column segments to 

the 4096 PEs in the MasPar, for example, is 

simple.  Instead of representing a contiguous 

segment of S3 in each PE, the 0
th

 PE holds as 

many numbers as memory will permit of the 

form 1 + 3  x, the 1
st
 PE holds numbers of the 

form 7 + 3  x, and so forth.  In general, let R be 

the number of rows of S3 skipped to generate all 

primes through n.  Let  be the number of 

elements of S3 to be help in each PE.  Finally, let 

j be any number in [0 .. ].  The general column 

based mapping for 4096 PEs is given in Table 3.  

In the algorithm, a main loop iterates over the 

small set of pre-generated primes and the inner 

sieve calculates the starting position of the 

composites and additively removes them. 

 

SIMD column segmenting is more efficient 

than row segmented mapping.  In column 

segmenting, there is no need to calculate a vector 

of offsets, nor is there need to make eight passes 

through memory to remove the composites.  

However, the sets of primes left in each PE are 

not contiguous.  To produce a sorted list of 

primes, it is necessary to bitwise interleave the 

segments of S3 in each set of eight adjacent PEs.   

 

5. Conclusion 
 

Many different algorithms for finding prime 

numbers exist.  The classic sieve of Eratosthenes, 

though by nature additive, is of super-linear time 

complexity.  Linear and sub-linear algorithms 

offer a better asymptotic time complexity, but 

are not as suitable for parallel implementation.  

Extensions and wheels improve over the classic 

sieve by removing composites of very small 

primes, but this only reduces the proportionality 

constant of its time complexity.  The third 

extension to the sieve of Eratosthenes is an 

excellent algorithm for parallel implementation.  

By defining a mapping between the elements of 

a bit vector and the set of integers relatively 

prime to 2, 3, and 5, this extension preserves its 

additive nature and reduces both time and space 

requirements.  Additionally, since m3 = 8, a one 

byte data structure may conveniently hold a row 

of S3, or a set of 2
i
 processors may evenly 

segment the columns of S3.  Both a row base 

segmented mapping and a column based 

segmented mapping were presented. 

 

The row mapping is a standard segmented 

sieve, in which each processor receives a 

continuous section of S3.  Unfortunately, this 

solution leads to a high percentage of time spend 

calculating the positions of composites in the 

columns of S3.  This is not good candidate 

algorithm for a SIMD synchronized architecture 

because the work distribution is static.  Using a 

MIMD farming environment with current CPU 

technology increases the concurrency and 

arithmetic efficiency, greatly reducing runtime.  

It is also a more scalable and portable approach.   

The SIMD column mapping produces good 

empirical results even on a dated MasPar MP-1.  

There is still restriction on concurrency where 

the workload among PEs becomes unbalanced, 

but it is not as significant as a SIMD row 

segmented algorithm.   

 

Future work includes studying the column 

segmented algorithm on a large cluster of 

workstations for very large n, in the range 10
12

 

through 10
18

. We are also working on the design 

of efficient parallel algorithms to begin prime 

generation from very large numbers instead of 

starting with single digit composites and primes 

as is required by well known prime generating 

algorithms. 
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