
Parallel Algorithms for the Third Extension of the Sieve of Eratosthenes

Todd A. Whittaker

Ohio State University

whittake@cis.ohio-state.edu

Kathy J. Liszka

The University of Akron

liszka@computer.org

Abstract

A prime number sieve is an algorithm for finding

all prime numbers in the range [2,n]. For large

n, however, the actual run time of existing

algorithms on a single processor computer is

prohibitive. Fortunately, the classic Sieve of

Eratosthenes and its extensions are suitable for

massively parallel architectures or networks of

workstations. Two mappings of the third

extension sieve are presented. One is for a

massively parallel SIMD architecture and the

other is for a network of workstations using the

PVM message-passing library.

1. Introduction

In addition to number theorists, prime

numbers are of great interest to two groups: code

makers and code breakers. Public key / private

key encryption is based on large prime numbers,

as are the methods of decrypting. The code

makers encrypt by choosing two large prime

numbers p and q, whose product n becomes part

of a key. The code breakers try to reverse this

process through a variety of factoring algorithms.

Previous practical parallel sieve efforts by

Bokhari [2] and Landsdowne [5] demonstrated

prime generation through 10
6
.

2. The Classic Sieve and Other

Popular Solutions

In the original algorithm attributed to the

fourth century B. C. library Eratosthenes, all the

numbers from 2 to n are written on a piece of

paper. Starting with 2, all multiples of 2 greater

than 2 are crossed off the page. The next number

after 2 which is not crossed off is 3, so all

multiples of 3 greater than 3 are removed. This

process continues until n is reached, the largest

possible factor of n. Remaining numbers, when

the algorithm completes, are prime.

This sieve is classified as additive, as the

composites are identified by adding p, the prime

under consideration, to the current composite.

This algorithm has super-linear time complexity

because a composite number is crossed off as

many times as it has prime factors. It was shown

in [13] that the overall time complexity of the

original sieve is O(n log log n) and the bit

complexity (the number of bits of storage

required) is O(n).

The original sieve considers the possibility

that any number in the range 2..n may be prime,

and therefore must check even obviously

composite numbers such as 4, 6, 8, and so forth.

Extensions, or wheels [10] eliminate these

obviously composite numbers from

consideration by pre-sieving them via a

particular initialization pattern, or by using a

function to map the reduced set onto the integers.

It is generally accepted that Eratosthenes

derived the first extension, which does not

contain multiples of 2 greater than 2, i.e., V =

{2} w where w = {2i + 1 | i }. In doing

so, Eratosthenes not only halved the quantity of

numbers he had to write and cross off, but he

also halved the time to complete the sieve. The

second extension [7] contains no multiples of 2

greater than 2 or multiples of 3 greater than 3,

i.e., V = {2, 3} w where w = {6i 1 | i }.

Generalizing, the k
th

 extension has no multiples

of the first k primes [6]. Furthermore, if all the

primes through n are known, then the range

(n] may be segmented [1] into N pieces which

may be sieved independently, reducing the space

complexity to O(n +) where = (n - n)/ N is

the size of the segment.

The goal of a linear sieve is to reduce the time

complexity by a factor of log log n over the

classic sieve to O(n); however, this is at the

expense of additional arithmetic complexity.

Examples of these are shown in [8] and [4]. It

was then shown in [9] that these approaches are

multiplicative and hence, have a higher time

complexity.

The goal of the sub-linear sieve as given by

Pritchard [9] is to reduce the asymptotic time

complexity to O(n/log log n) and to maintain the

additive arithmetic complexity of the classic

sieve. In linear sieve algorithms, a vector V =

(2, 3, 4, …, n} is initialized and each composite

is removed exactly once. To make a sieve sub-

linear, it is not only necessary to remove each

composite once, it is also necessary to place

fewer composites into V initially. Pritchard

generates V dynamically, adding primes and

only a select few composites per iteration. Some

of the composites are removed, while others are

used to generate larger primes in future

iterations; however, fewer composites are added

each iteration than in the linear time sieves. The

final iteration removes all remaining composites

from V.

Though the linear and sub-linear sieves look

attractive at first glance, they suffer from a

number of problems when considering a

practical parallel implementation. First, the

fastest and most obvious implementations

require one word of storage per element of V.

Composites removed from V still occupy

valuable space in memory. Attempting to bit

pack the elements, or to use dynamic memory

allocation introduces a prohibitive amount of

overhead. Second, the linear and sub-linear

algorithms require some form of global state, and

thus are not suited for parallel message passing

architectures. Finally, though both the linear and

sub-linear sieves are asymptotically faster than

the classic sieve, it has been shown in [3] and

[13] that variations on Eratosthenes original

algorithms are the most practical for feasible

inputs.

3. The Third Extension of the Sieve of

Eratosthenes

Extensions and wheels remove “obviously”

composite numbers (numbers which are

composites with at least one factor of a very

small prime) from V before the sieving process

begins. The first extension does not consider

multiples of 2, the second does not consider

multiples of 3 and the third does not consider

multiples of 2, 3, and 5. Wheels define a bit

pattern which can be used to initialize a bit

vector so that the composites of small primes are

already crossed out. Extensions take this one

step further by defining a mapping between the

elements in a bit vector and the integers

relatively prime to the first k primes, thus, no

bits are wasted.

We define and use the following symbols:

k the product of the first k primes defined by

Ck the set of integers less than and relatively

prime to k.

mk the cardinality of Ck defined by

Sk the set of integers through which to sieve

defined by

The third extension defines k = 3 in the above,

and the following are derived:

3 = 2 3 5 = 30

C3 = {1, 7, 11, 13, 17, 19, 23, 29}

m3 = C3 = 1 2 4 = 8

S3 = { 1, 7, 11, 13, 17, 19, 23, 29, 31, 17, 41, 43,

47, 49, 53, 59, 61, …}

By mathematically arranging the elements of

S3 a clear pattern emerges that will allow this

sieve to be additive; that is, once the first

composite is found, subsequent composites are a

fixed offset away. Rearrange S3 into a two

dimensional grid mk columns wide as shown in

Table 1. Composites of the prime p are always p

rows away from one another in the same column.

Because m3 = 8, it is convenient to represent a

row of S3 in a one byte data structure. For the

standard sieve, all that remains is to identify the

first composite of a prime p in each column.

Subsequent composites will be found p rows

down in the same column, as seen in Table 1 for

multiples of 7. By defining two operations, we

construct a table to locate the first multiple [11].

rindex(n) = n/ k

cindex(n) = i (Ci Ck) (Ci = n mod k)

Briefly, rindex(n) returns the row of the first

multiple of n, and cindex(n) returns the column

of the first multiple of n. However, multiples

exist in all columns. These formulas can be used

to construct a table to find the rows at which

multiples exist in the remaining columns. The

table is constructed by generating the ordered

pairs of [rindex(n), cindex(n)] for all n = i j,

i,j Ck and is shown in Table 2.

As noted, S3 has the property that each

number in this table may be stored in one byte

of data, so the table itself is small at 128

elements. By comparison, the table for S4 would

have 4608 elements while the table for S5 would

require well over one megabyte of storage.

To find the first multiples in each column of

the prime p, let r = rindex(p) and c = cindex(p).

Use c to select a row from Table 2. Let the

vector A represent the rindex entries and the

vector B represent the cindex entries from the cth

row. Now, the position of all the composites of

p may be found by choosing the rows from the

vector r C3 + A and the columns from B. For

example, to locate the first multiple of 37 in all

the columns, calculate r = rindex(37) = 37/30 =

1 and c = cindex(37) = 1. Using zero based

indexing, choose the row

{[0,1],[1,5],[2,4],[3,0],[3,7],[4,3],[5,2],[6,6]}

from Table 3 and create the vectors

 A = {0, 1, 2, 3, 4, 5, 6, 7}

 B = {1, 5, 4, 0, 7, 3, 2, 6}.

The rows in which the multiples may be found

are

 S = 1 { 1,7,11,13,17,19,23,29} +

{0,1,2,3,4,5,6,7} = {1,8,13,16,21,24,29,36}.

When S is recombined with the column entries in

B, the ordered pairs of (row, column) of

 {(1,1), (8,5), (13,14), (16,-), (21,7), (24,3),

(29,2), (36,6)}

comprise the positions of the first 3 composites

of 37 in S3.

3.1. Segmenting the Third Extension

A segmented sieve divides the numbers {2 …

n} into N segments of length = (n - n) / N.

Each segment is sieved independently, reducing

the storage requirements by a factor of N.

Segmenting requires that all the primes through

n be known in advance, or that these be

calculated in the initial stages of the algorithm

and stored for use in subsequent iterations.

Since these primes must be stored in O(n)

space, no space complexity is saved by choosing

N less than n, so choosing a segment of size

approximately n is ideal [12].

Table 2 and several simple calculations

produce the row and column entries in S3 of the

first multiples of a given prime. However, in a

segmented sieve, S3 is divided into sections, and

the starting row number for each section will be

different. Thus, the offset to the first multiple

will also be different. The starting row number

of a segment can be used to adjust the values in

Table 2 so that the first multiples of a prime p

may be located in that segment. This adjustment

is used in both a single processor segmented

sieve and a data parallel sieve.

 Let R be the starting row number of a

segment for an iteration of a segmented sieve.

The first composites in this subset of S3 will be

found at

where S is the vector or row entries calculated

for the segment starting with row 0 (Table 1).

For example, let R = 300 (perhaps this is the

third iteration of 100 rows of the table). From

the previous example for the prime 37, S = {1, 8,

13, 16, 21, 24, 29, 36} are the rows in which the

first composites are found. Applying the above

formula to this vector yields the following:

(300 – 1)/37 37 – (300 – 1) = 34

(300 – 8)/37 37 – (300 – 8) = 4

 … …

(300 – 36)/37 37 – (300 – 36) = 32.

The new vector S = {34, 4, 9, 12, 17, 20, 25, 32}

is recombined with the B vector to yield the

position pairs {(34,1), (4,5), (9,4), (12,0), (17,7),

(20,3), (25,2), (32,6)}.

4. Parallel Mappings of the Third

Extension

We now present a MIMD implementation

using PVM (Parallel Virtual Machine) over a

network of SPARCstations and a SIMD

implementation on a MasPar MP-1 with 4096

processing elements for the sake of

demonstrating different mapping strategies for

two opposing parallel environments. It is our

intent to focus on mapping designing issues and

tradeoffs rather than benchmark timings that are

influenced by current technology.

4.1. MIMD Row Farming

Consider a network of workstations and a

farming algorithm. The approach is to treat S3 as

a standard segmented sieve and assign a

contiguous block of numbers (a subset of the

rows of S3) to each processor. With each row of

S3 eight columns wide, a single row of S3 is

represented in one byte. The algorithm will

make eight passes through memory and must

calculate a vector of eight (row, column) pairs

per prime. A good degree of parallelism is

present in this approach. However, since several

different architectures are present in the network,

it is best to distribute the work dynamically as

processors become available rather than assign

work statically. In essence, the farming

algorithm starts N worker processes, sends them

a set of initial data and a job assignment, and

waits for the processes to return their results.

The master process also performs tasks, which

differentiates a farming algorithm from a

master/slave algorithm. When the master

process receives a result, it sends out a new job

assignment to the available worker. The dangers

in this type of setup are not easily resolved: the

master process may become a bottleneck if too

many workers are spawned; the master process

may respond too slowly to a return value from a

worker; the master process is a single point of

failure; and given that communication is

inherent, parallelism can be limited.

The row farming algorithm is divided into

two major components: the master algorithm and

the worker algorithm. The master algorithm

spawns N worker processes and sends them each

a section of S3 to process. By sending the

starting row (R), the number of rows through

which to sieve () and the number of iterations

through those rows (itr), the worker process has

enough information to create and sieve its

segment. The master process sends the same

number of iterations and array size to each

worker, however, this need not be the case.

Given the memory and processor characteristics

of the worker machine, it may be more efficient

to iterate more times through a smaller array, or

fewer times through a larger array. Additionally,

the same sizes need not be sent every time to the

same worker, provided the performance penalty

of dynamic memory allocation between

iterations is small. Each worker pre-generates all

the primes through n which will be used in the

segmented sieving process. It is more efficient

to generate them locally and in parallel rather

than pay the communication price for the master

process to generate them and send the set to each

worker. The workers then enter a loop where

they receive (R, itr,) as their work assignment.

They iterate itr times over simulating a

segment of size itr , removing multiples of

each p from S3 starting at row R.

In the MIMD farming model, each processor

is assigned a new task as soon as it finishes its

last task, which increases concurrency and

efficiency. Higher numbered iterations still take

longer than lower numbered iterations, but all

processors are in use. A distinct advantage to

this approach is that the model scales well to

more processors. In empirical studies, we found

that when the tasks are evenly divided among the

processors, the speedup is nearly linear.

Obviously, when slower processors are added to

the pool they limit the total speedup.

4.2. SIMD Column Segmenting

On a massively parallel architecture, we find

that there are several naïve mappings. Row

segmenting, as described above, is one of them.

The MIMD farming algorithm could be easily

adapted to a synchronized environment such as

the MasPar where some of the master process

duties are performed by an array control unit and

the worker processes are performed by the

processing elements (PEs). There are many

limitations to this approach, the most striking

being lower numbered PEs are idle more than

higher numbered PEs , thus limiting parallelism.

The synchronization of this model does not

permit lower numbered PEs to sieve another

range while the higher numbered ones complete

the previous range. This is why we found the

approach suitable for a MIMD environment but

not massively parallel SIMD.

Rather than segment S3 by rows, consider the

columns: each PE may hold a portion of a single

column, reducing the number of calculations for

offsets from eight to one. Since S3 has eight

columns, the assignment of column segments to

the 4096 PEs in the MasPar, for example, is

simple. Instead of representing a contiguous

segment of S3 in each PE, the 0
th

 PE holds as

many numbers as memory will permit of the

form 1 + 3 x, the 1
st
 PE holds numbers of the

form 7 + 3 x, and so forth. In general, let R be

the number of rows of S3 skipped to generate all

primes through n. Let be the number of

elements of S3 to be help in each PE. Finally, let

j be any number in [0 ..]. The general column

based mapping for 4096 PEs is given in Table 3.

In the algorithm, a main loop iterates over the

small set of pre-generated primes and the inner

sieve calculates the starting position of the

composites and additively removes them.

SIMD column segmenting is more efficient

than row segmented mapping. In column

segmenting, there is no need to calculate a vector

of offsets, nor is there need to make eight passes

through memory to remove the composites.

However, the sets of primes left in each PE are

not contiguous. To produce a sorted list of

primes, it is necessary to bitwise interleave the

segments of S3 in each set of eight adjacent PEs.

5. Conclusion

Many different algorithms for finding prime

numbers exist. The classic sieve of Eratosthenes,

though by nature additive, is of super-linear time

complexity. Linear and sub-linear algorithms

offer a better asymptotic time complexity, but

are not as suitable for parallel implementation.

Extensions and wheels improve over the classic

sieve by removing composites of very small

primes, but this only reduces the proportionality

constant of its time complexity. The third

extension to the sieve of Eratosthenes is an

excellent algorithm for parallel implementation.

By defining a mapping between the elements of

a bit vector and the set of integers relatively

prime to 2, 3, and 5, this extension preserves its

additive nature and reduces both time and space

requirements. Additionally, since m3 = 8, a one

byte data structure may conveniently hold a row

of S3, or a set of 2
i
 processors may evenly

segment the columns of S3. Both a row base

segmented mapping and a column based

segmented mapping were presented.

The row mapping is a standard segmented

sieve, in which each processor receives a

continuous section of S3. Unfortunately, this

solution leads to a high percentage of time spend

calculating the positions of composites in the

columns of S3. This is not good candidate

algorithm for a SIMD synchronized architecture

because the work distribution is static. Using a

MIMD farming environment with current CPU

technology increases the concurrency and

arithmetic efficiency, greatly reducing runtime.

It is also a more scalable and portable approach.

The SIMD column mapping produces good

empirical results even on a dated MasPar MP-1.

There is still restriction on concurrency where

the workload among PEs becomes unbalanced,

but it is not as significant as a SIMD row

segmented algorithm.

Future work includes studying the column

segmented algorithm on a large cluster of

workstations for very large n, in the range 10
12

through 10
18

. We are also working on the design

of efficient parallel algorithms to begin prime

generation from very large numbers instead of

starting with single digit composites and primes

as is required by well known prime generating

algorithms.

6. References

[1] C. Bays and R. H. Hudson, “The

segmented sieve of Eratosthenes and primes in

arithmetic progressions to 10
12

”, BIT, vol. 17,

1977, pp. 121-127.

[2] S. Bokhari, “Multiprocessing the sieve of

Eratosthenes”, Computer, vol. 20, no. 4, April

1987, pp. 50-58.

[3] B. Dunten, J. Jones, and J. Sorenson, “A

space-efficient fast prime number sieve”,

Information Processing Letters, vol. 59, no. 2.,

July 1996, pp. 79-84.

[4] D. Gries and J. Misra, “A linear sieve

algorithm for finding prime numbers”,

Communications of the ACM, vol. 21, no. 12,

December 1978, pp. 999-1003.

[5] S. Landsdowne, “Reprogramming the

sieve of Eratosthenes”, Computer, vol. 20, no. 8,

August 1987, pp. 90-91.

[6] K. Liszka and A. Quesada, “On the

parallel k
th

 extension of the sieve of

Eratosthenes”, Parallel Algorithms and

Applications, vol. 10, 1996, pp. 111-125.

[7] X. Luo, “A practical sieve algorithm for

finding prime numbers”, Communications of the

ACM, vol. 32, no. 3, March 1989, pp. 344-346.

[8] H. Mairson, “Some new upper bounds on

the generation of prime numbers”,

Communications of the ACM, vol. 20, no.9,

Sept. 1977, pp. 664-669.

[9] P. Pritchard, “A sublinear additive sieve

for finding prime numbers”, Communications of

the ACM, vol. 24, no. 1, Jan. 1981, pp. 18-23.

[10] P. Pritchard, “Explaining the wheel

sieve”, Acta Informatica, vol. 17, 1982, pp. 477-

485.

[11] A. Quesada, Technical correspondence,

Communications of the ACM, vol. 35, no. 3,

March 1992, pp. 11-13.

[12] J. Sorenson, “An introduction to prime

number sieves”, Technical Report CS-TR-90-

909, Dept. of Computer Sciences, University of

Wisconsin-Madison, Jan. 1990.

[13] J. Sorenson, “An analysis of two prime

number sieves”, Technical Report CS-TR-91-

1028, Dept. of Computer Sciences, University of

Wisconsin-Madison, June 1991.

